• Title/Summary/Keyword: NbN

Search Result 520, Processing Time 0.028 seconds

Superconducting critical temperature in FeN-based superconductor/ferromagnet bilayers

  • Hwang, T.J.;Kim, D.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.2
    • /
    • pp.5-7
    • /
    • 2016
  • We present an experimental investigation of the superconducting transition temperatures, $T_c$, of superconductor/ferromagnet bilayers with varying the thickness of ferromagnetic layer. FeN was used for the ferromagnetic (F) layer, and NbN and Nb were used for the superconducting (S) layer. The results were obtained using three different-thickness series of the S layer of the S/F bilayers: NbN/FeN with NbN thickness, $d_{NbN}{\approx}9.3nm$ and $d_{NbN}{\approx}10nm$, and Nb/FeN with Nb thickness $d_{Nb}{\approx}15nm$. $T_c$ drops sharply with increasing thickness of the ferromagnetic layer, $d_{FeN}$, before maximal suppression of superconductivity at $d_{FeN}{\approx}6.3nm$ for $d_{NbN}{\approx}10nm$ and at $d_{FeN}{\approx}2.5nm$ for $d_{Nb}{\approx}15nm$, respectively. After shallow minimum of $T_c$, a weak $T_c$ oscillation was observed in NbN/FeN bilayers, but it was hardly observable in Nb/FeN bilayers.

Suppression of superconductivity in superconductor/ferromagnet multilayers

  • Hwang, T.J.;Kim, D.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.33-36
    • /
    • 2016
  • Suppression of the superconducting transition temperature ($T_c$) of NbN thin films in superconductor/ferromagnet multilayers has been investigated. Both superconducting NbN and ferromagnetic FeN layers were deposited on thermally oxidized Si substrate at room temperature by using reactive magnetron sputtering in an $Ar-N_2$ gas mixture. The thickness of FeN films was fixed at 20 nm, while the thickness of NbN films was varied from 3 nm to 90 nm. $T_c$ suppression was clearly observed in NbN layers up to 70 nm thickness when NbN layer was in proximity with FeN layer. For a given thickness of NbN layer, the magnitude of $T_c$ suppression was increased in the order of Si/FeN/NbN, Si/NbN/FeN, and Si/FeN/NbN/FeN structure. This result can be used to design a spin switch whose operation is based on the proximity effect between superconducting and ferromagnetic layers.

Measurement of $^{93}Nb(n,n{\alpha})^{89m}Y$, $^{93}Nb(n,{\alpha})^{90m}Y$ and $^{93}Nb(n,2n)^{92m}Nb$ Cross Sections for 14 MeV Neutrons ($^{93}Nb(n,n{\alpha})^{89m}Y$, $^{93}Nb(n,{\alpha})^{90m}Y$$^{93}Nb(n,2n)^{92m}Nb$ 반응의 14 MeV 중성자 반응 단면적 측정)

  • Kim, Y.S.;Kim, N.B.;Chung, K.H.;Bak, H.I.
    • Nuclear Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.92-96
    • /
    • 1986
  • The $^{93}Nb(n,n\alpha)^{89m}Y$, $^{93}Nb(n,{\alpha})^{90m}Y$ and $^{93}Nb(n,2n)^{92m}Nb$ cross sections at a neutron energy of 14.6 MeV have been measured relative to the $^{27}Al(n,p)^{27}Mg$ and $^{27}Al(n,{\alpha})^{24}Na$ cross sections. A small accelerator utilizing $T(D,n)^4He$ reaction was used as a neutron source and the neutron energy spread is about 0.4MeV at the sample. All induced activities were measured with a 70cc HPGe detector in the same geometry.

  • PDF

The Effects of Nitrogen on Microstructure and Magnetic Properties of Nanocrystalline Fe-Nb-B-N Thin Films (나노결정구조 Fe-Nb-B-N 박막의 미세구조 및 자기적 특성)

  • 박진영;서수정;노태환;김광윤;김종열;김희중
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.5
    • /
    • pp.250-257
    • /
    • 1997
  • The microstructure and magnetic properties of Fe-Nb-B-N thin film alloys, which produced by rf magnetron sputtering method in $Ar+N_2$ mixed gas atmosphere, were investigated. The $Fe_{70}Nb_{14}B_{11}N_5$ films, annealed at 59$0^{\circ}C$, exhibit soft magnetic properties: $4{\pi}M_s=16.5kG$ , $H_c=0.13Oe$ and ${\mu}_{eff}$ (1~10 MHz)=5, 000. The frequency stability of the Fe-Nb-B-N films has also been found to be good up to 10 MHz. The Fe-Nb-B-N thin film alloys annealed at 59$0^{\circ}C$ consist of three phase; fine crystalline $\alpha$-Fe phase with grain size of about 5~10 nm, Nb-B rich amorphous phase and Nb-nitride precipitates with the size of less than 3 nm. Annealed Fe-Nb-B films have two phases; $\alpha$-Fe grains with the size of about 10 nm and Nb-B rich amorphous phase. The addition of N decreased $\alpha$-Fe grain size due to the precipitation of NbN. The good magnetic properties of the Fe-Nb-B-N film alloys are due to fine $\alpha$-Fe grains resulting from the precipitation of NbN.

  • PDF

Effect of Inductively Coupled Plasma on the Microstructure, Structure and Mechanical Properties of NbN Coatings (유도결합 플라즈마 파워가 NbN 코팅막의 미세구조, 결정구조 및 기계적 특성에 미치는 영향에 관한 연구)

  • Chun, Sung-Yong
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.5
    • /
    • pp.205-210
    • /
    • 2015
  • NbN coatings were prepared by ICP (inductively coupled plasma) assisted magnetron sputtering from a Nb metal target in $Ar+N_2$ atmosphere at various ICP powers. Effect of ICP on the microstructure, crystalline structure and mechanical properties of NbN coatings was investigated by field emission electron microscopy, X-ray diffraction, atomic force microscopy and nanoindentation measurements. The results show that ICP power has a significant influence on coating microstructure, structure and mechanical properties of NbN coatings. With the increasing of ICP power, coating microstructure evolves from the columnar structure of DC process to a highly dense one. Crystalline structure of NbN coatings were changed from cubic ${\delta}$-NbN to hexagonal ${\beta}-Nb_2N$ with increase of ICP power. The maximum nano hardness of 25.4 GPa with Ra roughness of 0.5 nm was obtained from the NbN coating sputtered at ICP power of 200 W.

Precipitation and Precipitate Coarsening Behavior According to Nb Addition in the Weld HAZ of a Ti-containing Steel (Nb의 첨가에 따른 Ti 첨가 저합금강 용접열영향부에서의 석출물 거동 변화)

  • Moon, Joon-Oh;Lee, Chang-Hee
    • Journal of Welding and Joining
    • /
    • v.26 no.1
    • /
    • pp.76-82
    • /
    • 2008
  • The effect of Nb addition on the precipitation and precipitate coarsening behavior was investigated in Ti and Ti + Nb steel weld HAZ. A dilatometer equipped with a He-quenching system was used to simulate the weld thermal cycle. Compared to $TiC_yN_{1-y}$ precipitate in a Ti containing steel, $Ti_xNb_{1-x}C_yN_{1-y}$ complex particle with addition of Nb is precipitated in a Ti + Nb containing steel. Meanwhile, precipitate coarsening occurred more easily in Ti + Nb steel, which may be because the high temperature stability of $Ti_xNb_{1-x}C_yN_{1-y}$ complex particle is deteriorated by the Nb addition.

A Comparative Study of NbN Coatings Deposited by DC and Pulsed DC Asymmetric Bipolar Magnetron Sputtering (DC 스퍼터법과 비대칭 바이폴라 펄스 DC 스퍼터법으로 증착된 NbN 코팅막의 물성 비교연구)

  • Chun, Sung-Yong;Oh, Bok-Hyun
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.4
    • /
    • pp.136-141
    • /
    • 2015
  • The paper presents the comparative results of NbN coatings deposited by DC and pulsed DC asymmetric bipolar magnetron sputtering systems. The results show that, with the decreasing duty cycle and increasing pulse frequency, the coating morphology changes from a columnar to a dense structure, with finer grains. The Pulsed sputtered NbN coatings showed higher hardness, higher residual stress, and smaller grain sizes than those of DC prepared NbN coatings. Moreover residual stress of pulsed sputtered NbN coatings increased on increasing pulse frequency. Meanwhile, the surface roughness decreased continuously with increasing pulsed DC frequency up to 50 kHz.

Microstructure and Wear Resistance of Ti-Me-N (Me=V, Nb and Si) Nanofilms Prepared by Hybrid PVD (Hybrid PVD로 제조된 Ti-Me-N (Me=V, Si 및 Nb) 나노 박막의 미세구조와 마모특성)

  • Yang, Young-Hwan;Kwak, Kil-Ho;Lee, Sung-Min;Kim, Seong-Won;Kim, Hyung-Tae;Kim, Kyung-Ja;Lim, Dae-Soon;Oh, Yoon-Suk
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.3
    • /
    • pp.95-104
    • /
    • 2011
  • Ti based nanocomposite films including V, Si and Nb (Ti-Me-N, Me=V, Si and Nb) were fabricated by hybrid physical vapor deposition (PVD) method consisting of unbalanced magnetron (UBM) sputtering and arc ion plating (AIP). The pure Ti target was used for arc ion plating and other metal targets (V, Si and Nb) were used for sputtering process at a gas mixture of Ar/$N_2$ atmosphere. Mostly all of the films were grown with textured TiN (111) plane except the Si doped Ti-Si-N film which has strong (200) peak. The microhardness of each film was measured using the nanoindentation method. The minimum value of removal rate ($0.5{\times}10^{-15}\;m^2/N$) was found at Nb doped Ti-Nb-N film which was composed of Ti-N and Nb-N nanoparticles with small amount of amorphous phases.

Anomalous superconducting spin-valve effect in NbN/FeN/Cu/FeN/FeMn multilayers

  • Hwang, Tae Jong;Kim, Dong Ho
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.3
    • /
    • pp.23-26
    • /
    • 2017
  • We have studied magnetic and transport properties of NbN/FeN/Cu/FeN/FeMn spin-valve structure. In-plane magnetic moment exhibited typical hysteresis loops of spin valves in the normal state of NbN film at 20 K. On the other hand, the magnetic hysteresis loop in the superconducting state exhibited more complex behavior in which exchange bias provided by antiferrmagnetic FeMn layer to adjacent FeN layer was disturbed by superconductivity. Because of this, the ideal superconducting spin-valve effect was not detected. Instead the stray field originated from unsaturated magnetic states dominated the transport properties of NbN/FeN/Cu/FeN/FeMn multilayer.

Crystal Structure, Microstructure and Mechanical Properties of NbN Coatings Deposited by Asymmetric Bipolar Pulsed DC Sputtering

  • Chun, Sung-Yong;Im, Hyun-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.1
    • /
    • pp.33-37
    • /
    • 2017
  • Single phase niobium nitride (NbN) coatings were deposited using asymmetric bipolar pulsed dc sputtering by varying pulse frequency and duty cycle of pulsed plasmas. Crystal structure, microstructure, morphology and mechanical properties were examined using XRD, FE-SEM, AFM and nanoindentation. Upon increasing pulse frequencies and decreasing duty cycles, the coating morphology was changed from a pyramidal-shaped columnar structure to a round-shaped dense structure with finer grains. Asymmetric bipolar pulsed dc sputtered NbN coatings deposited at pulse frequency of 25 kHz is characterized by higher hardness up to 17.4 GPa, elastic modulus up to 193.9 GPa, residual compressive stress and a smaller grain size down to 27.5 nm compared with dc sputtered NbN coatings at pulse frequency of 0 kHz. The results suggest that the asymmetric bipolar pulsed dc sputtering technique is very beneficial to reactive deposition of transition-metal nitrides such as NbN coatings.