• Title/Summary/Keyword: Neodymium Magnet

Search Result 44, Processing Time 0.021 seconds

Design of Neodymium Permanent Magnetic Core using FEM (유한요소법을 이용한 네오디움 영구자석의 코어 설계)

  • Hur, Kwan-Do;Ye, Sang-Don
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.5
    • /
    • pp.70-75
    • /
    • 2014
  • Permanent magnets have recently been considered as device that can be used to control the behavior of mechanical systems. Neodymium magnets, a type of permanent magnet, have been used in numerous mechanical devices. These are permanent magnets made from an alloy of neodymium, iron, and boron to form the Nd2Fe14B tetragonal crystalline structure. The magnetic selection, magnet core design and mechanical errors of the magnetic component can affect the performance of the magnetic force. In this study, the coercive force, residual induction, and the dimensions of the design parameters of the magnet core are optimized. The design parameters of magnet core are defined as the gap between the magnet and the core, the upper contact radius, and the lower thickness of the core. The force exercised on a permanent magnet in a non-uniform field is dependent on the magnetization orientation of the magnet. Non-uniformity of the polarization direction of the magnetic has been assumed to be caused by the angular error in the polarization direction. The variation in the magnetic performance is considered according to the center distance, the tilt of the magnetic components, and the polarization direction. The finite element method is used to analyze the magnetic force of an optimized cylindrical magnet.

Separation of Neodymium from NdEeB Permanent Magnetic Scrap (NdFeB계 영구자석 스크랩으로부터 네오디뮴의 분리회수)

  • Yoon Ho-Sung;Kim Chul-Joo;Lee Jin-Yeung;Kim Sung-Don;Kim Joon-Soo;Lee Jae-Chun
    • Resources Recycling
    • /
    • v.12 no.6
    • /
    • pp.57-63
    • /
    • 2003
  • In this study, the separation of neodymium was investigated from NdFeB permanent magnet scrap. Decomposition and leach-ing process of NdFeB permanent magnet scrap by oxidation roasting and sulfuric arid leaching were examined. Neodymium could be separated from iron by double salt precipitation using sodium sulfate. The optimum conditions established for decom-position and leaching are as follows: oxidation roasting temperature is $500^{\circ}C$ for sintered scrap and $700^{\circ}C$ for bonded scrap, concentration of sulfuric acid in leaching solution is 2.0 M, leaching temperature and time is $50^{\circ}C$ and 2 hrs, and pulp density is 15%. The leaching yield of neodymium and iron was 99.4% and 95.7% respectively. The optimum condition for separation of neodymium by double-salt precipitation was 2 equivalents of sodium sulfate and $50^{\circ}C$ The yield of neodymium was above 99.9%.

Recovery of Neodymium from NdFeB Oxidation-Roasted Scrap by Acetic Acid Leaching (NdFeB계 영구자서 산화배소 스크랩의 초산침출에 의한 네오디뮴 회수)

  • Yoon, Ho-Sung;Kim, Chul-Joo;Kim, Joon-Soo
    • Resources Recycling
    • /
    • v.13 no.6
    • /
    • pp.43-48
    • /
    • 2004
  • For the separation of neodymium from NdFeB permanent magnet scrap, the scrap was roasted for oxidizing, and leached with acetic acid followed by fractional crystallization for selective separation. From the analysis results of the leached solution, the optimum condition for the recovery of neodymium was found that leaching temperature, leaching time and pulp density are 80$^{\circ}C$, 3 hours, and 35%, respectively. At this optimum condition, more than 90% of neodymium could be recovered. Concentration of neodymium acetate in acetic acid. The optimum condition for the recovery of neodymium acetate crystal from the leached solution was that the initial leaching solution was evaporated until the remaining volume was about 1/5 of the initial volume. At this condition, 67.5% of neodymium was recovered from the leached solution. The neodymium remaining in the concentrated solution was recovered by reacting it with oxalic acid.

Performance Evaluation of Microchip Removal Device Rotating by Conveyor Belt with Neodymium Permanent Magnet (네오디뮴 영구자석을 이용한 컨베이어벨트 구동형 미세칩 포집장치의 성능 평가)

  • Choi, Sung-Yun;Wang, Jun-hyeong;Wang, Duck Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.1
    • /
    • pp.103-109
    • /
    • 2021
  • Fine chips generated by machining have an impact on machine failure and quality of machined products, it is necessary to remove the chips, so the microchip collection and removal device by rotating conveyor belt with neodymium permanent magnets was developed. In this research, to solve the problem for reducing the existing microchips in the tank, a micro-chip removal device by rotating conveyor belt with neodymium permanent magnets developed. In the development of micro-chip removal device, 3D CATIA modeling was used, and the flow analysis and the electromagnetic force analysis were performed with COMSOL Multiphysics program. To evaluate the performance of the prototypes produced, design of experiments (DOE) is used to obtain the effect of neodymium conveyor movement speed on chip removal for the ANOVA analysis of recovered powders. An experiment was conducted to investigate the effect of the conveyor feed rate on the chip removal performance in detail. As a result of the experiment, it was confirmed that the slower the feeding speed of the fine chip removing device, the more efficient the chip removal.

An Eco-efficiency Analysis of Nd Permanent Magnet Recycling (Nd 영구자석(永久磁石) 재활용(再活用)의 Eco-efficiency 분석(分析))

  • Kim, Byung Ju;Kim, Hyoungseok;Yoon, Ho Sung;Cho, Bong Gyoo;Hur, Tak
    • Resources Recycling
    • /
    • v.22 no.4
    • /
    • pp.55-61
    • /
    • 2013
  • In this study, eco efficiency analysis is performed to analyze Neodymium (Nd) containing permanent magnet recycling process. Life cycle assessment (LCA) and life cycle costing (LCC) are used to apply eco efficiency analysis. In the environmental aspects, global warming potential (GWP) of 1kg permanent magnet is 1.25E + 00 kg $CO_2$ eq. and abiotic resource depletion potential (ADP) is 1.10E - 02 Sb eq. This recycling process costs about 2130 KWR. Environmental efficiency of GWP is at 6.43 and ADP is at 5.32 when compared with vigin metal. Economic efficiency is at 6.74. This study confirms that Nd containing permanent magnet recycling process is sustainable system because of environmental and economical improvement.

A Study on the Characterization of Neodymium Oxalate by Reaction Crystallization (반응성 결정화에 의한 네오디뮴 옥살레이트 특성 고찰)

  • Yoon, Ho-Sung;Kim, Chul-Joo;Kim, Joon-Soo
    • Resources Recycling
    • /
    • v.13 no.5
    • /
    • pp.37-44
    • /
    • 2004
  • In this study, neodymium oxalate powders were prepared by injecting oxalic acid to the neodymium chloride solution resulted from the acid leaching solution of NdFeB magnet scrap. The effect of experimental conditions on the characteristics of neodymium oxalate powders were investigated. Neodymium oxalate was aggregated by primary particles formed by nucleation, and average size of aggregates was affected by experimental conditions. In a constant volume, increase of reactants affected the average size of aggregate formed by collision of primary particles. In a constant concentration of reactants, agitation speed decreased the size of aggregate due to breakage of particles attached on the surface of aggregate. The number of primary particles decreased with increasing reaction temperature, and the size of aggregates decreased due to the decrease of collision probability. From the results of decomposition behavior of neodymium oxalate, oxalate decomposed from $400^{\circ}C$, and neodymium oxide began to crystallize at above $620^{\circ}C$.

TME EFFECT OF MAGNETISM(NEODYMIUM MAGNET) ON BONE FORMATION AROUND TITANIUM IMPLANTS INSERTED INTO THE TIBIA OF RABBIT (Rabbit의 tibia에 매식된 titanium시편 내부에 설치한 희토류 자석의 자성이 주위의 골형성에 미치는 영향에 관한 연구)

  • Park Myung-Won;Lee Sung-Bok;Kwon Kung-Rock;Choi Dae-Gyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.4
    • /
    • pp.519-527
    • /
    • 2005
  • Statement of problem : There are many articles that showed that the magnetism affected the bone formation around titanium implant. It means that a proper magnetism made the osseointegration improved around the implant. So after additional research on the other effect of magnetism on bone formation in implant therapy, we can conclude its possibility of clinical application on implant treatment. Purpose: The purposes of this study were to find out the intensity of magnetic field where magnetism in the titanium implant specimen inserted into the bone could affect the bone formation, and to discover the possibility of clinical application in the areas of dental implants and bone grafts. Material and method: Ten adult male rabbits(mean BW 2Kg) were used in this study. Titanium implant specimens were surgically implanted on the mesial side of the tibia of rabbits. Neodymium magnets(Magnedisc 500, Aichi Steel Corp. Japan) were placed into the implants of experimental group except control group, just after placement of the titanium implants. At 2, 4 and 8 weeks after the surgery, the animals were sacrificed, specimens were obtained and stained with Hematoxylin-Eosin for light microscopic evaluation and histomorphometric analysis. Conclusion : The results were as follows: 1. In radiographic findings, increased radiopacity downward from crestal bone was observed along the titanium implant specimen at experimental period passed by 2, 4, and 8 weeks in both control and experimental group. 2. In histoiogic findings, increased new bone formation was shown in both control and experimental group through the experiment performed for 2, 4, and 8 weeks. More new bone formation and bone remodeling were shown in experimental group. 3. In histomorphometric analysis, the bone contact ratios were 11.9% for control group and 38.5% for experimental group (p<0.05).

The Influence of Magnetization Pattern on the Performance of Permanent Magnet Eddy Current Couplings and Brakes

  • Cha, Hyun-Rok;Cho, Han-Wook;Lee, Sung-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.3
    • /
    • pp.379-384
    • /
    • 2008
  • This paper examines permanent magnet eddy current couplings and brakes. Specifically, the effect of permanent magnet magnetization patterns on the magnetic field and force production is investigated. The eddy current couplings and brakes employ high energy-product neodymium-iron-boron (NdFeB) permanent magnets that act on iron-backed copper drums to provide torque transfer from motor to load without mechanical contact. A 2-dimensional finite element modeling is performed to predict the electromagnetic behavior and the torque-speed characteristics of permanent magnet type eddy current couplings and brakes under constant speed operation.

Non-Surgical Management of Gastroduodenal Fistula Caused by Ingested Neodymium Magnets

  • Phen, Claudia;Wilsey, Alexander;Swan, Emily;Falconer, Victoria;Summers, Lisa;Wilsey, Michael
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.21 no.4
    • /
    • pp.336-340
    • /
    • 2018
  • Foreign body ingestions pose a significant health risk in children. Neodymium magnets are high-powered, rare-earth magnets that is a serious issue in the pediatric population due to their strong magnetic force and high rate of complications. When multiple magnets are ingested, there is potential for morbidity and mortality, including gastrointestinal fistula formation, obstruction, bleeding, perforation, and death. Many cases require surgical intervention for removal of the magnets and management of subsequent complications. However, we report a case of multiple magnet ingestion in a 19-month-old child complicated by gastroduodenal fistula that was successfully treated by endoscopic removal and supportive care avoiding the need for surgical intervention. At two-week follow-up, the child was asymptomatic and upper gastrointestinal series obtained six months later demonstrated resolution of the fistula.

Development of a Round endmill Type MR Polishing System Using Neodymium Magnets (네오디뮴 자석을 이용한 라운드 엔드밀 타입 MR연마 시스템 개발)

  • Hong, Kwang-Pyo;Shin, Bong-Cheol;Kim, Dong-Woo;Cho, Myeong-Woo;Je, Tae-Jin
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.316-321
    • /
    • 2011
  • Recently, it has been studied machining of micro parts with increasing demands for ultra precision parts. However, many engineering problems have already begun in polishing of optical parts or lens. As a method to overcome such problems, a new technology for the polishing of the target surface is being studied by controlling abrasives using MR fluids which are sensitive to magnetic fields. Since the current MR polishing system uses a big electromagnet, and is difficult to polish micro parts or spherical lens. Therefore, in this study, a round endmill type MR polishing system was developed to polish a three-dimensional structure which has spherical or inclined plane. And then, series of experiments were performed to verify the polishing performance of the developed round endmill type MR polishing system.