• Title/Summary/Keyword: Network Generation Model

Search Result 596, Processing Time 0.027 seconds

Probability-Based Context-Generation Model with Situation Propagation Network (상황 전파 네트워크를 이용한 확률기반 상황생성 모델)

  • Cheon, Seong-Pyo;Kim, Sung-Shin
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.1
    • /
    • pp.56-61
    • /
    • 2009
  • A probability-based data generation is a typical context-generation method that is a not only simple and strong data generation method but also easy to update generation conditions. However, the probability-based context-generation method has been found its natural-born ambiguousness and confliction problems in generated context data. In order to compensate for the disadvantages of the probabilistic random data generation method, a situation propagation network is proposed in this paper. The situation propagating network is designed to update parameters of probability functions are included in probability-based data generation model. The proposed probability-based context-generation model generates two kinds of contexts: one is related to independent contexts, and the other is related to conditional contexts. The results of the proposed model are compared with the results of the probabilitybased model with respect to performance, reduction of ambiguity, and confliction.

  • PDF

Active Distribution Network Expansion Planning Considering Distributed Generation Integration and Network Reconfiguration

  • Xing, Haijun;Hong, Shaoyun;Sun, Xin
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.540-549
    • /
    • 2018
  • This paper proposes the method of active distribution network expansion planning considering distributed generation integration and distribution network reconfiguration. The distribution network reconfiguration is taken as the expansion planning alternative with zero investment cost of the branches. During the process of the reconfiguration in expansion planning, all the branches are taken as the alternative branches. The objective is to minimize the total costs of the distribution network in the planning period. The expansion alternatives such as active management, new lines, new substations, substation expansion and Distributed Generation (DG) installation are considered. Distribution network reconfiguration is a complex mixed-integer nonlinear programming problem, with integration of DGs and active managements, the active distribution network expansion planning considering distribution network reconfiguration becomes much more complex. This paper converts the dual-level expansion model to Second-Order Cone Programming (SOCP) model, which can be solved with commercial solver GUROBI. The proposed model and method are tested on the modified IEEE 33-bus system and Portugal 54-bus system.

Prediction of Wind Power Generation using Deep Learnning (딥러닝을 이용한 풍력 발전량 예측)

  • Choi, Jeong-Gon;Choi, Hyo-Sang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.2
    • /
    • pp.329-338
    • /
    • 2021
  • This study predicts the amount of wind power generation for rational operation plan of wind power generation and capacity calculation of ESS. For forecasting, we present a method of predicting wind power generation by combining a physical approach and a statistical approach. The factors of wind power generation are analyzed and variables are selected. By collecting historical data of the selected variables, the amount of wind power generation is predicted using deep learning. The model used is a hybrid model that combines a bidirectional long short term memory (LSTM) and a convolution neural network (CNN) algorithm. To compare the prediction performance, this model is compared with the model and the error which consist of the MLP(:Multi Layer Perceptron) algorithm, The results is presented to evaluate the prediction performance.

Deep Adversarial Residual Convolutional Neural Network for Image Generation and Classification

  • Haque, Md Foysal;Kang, Dae-Seong
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.10 no.1
    • /
    • pp.111-120
    • /
    • 2020
  • Generative adversarial networks (GANs) achieved impressive performance on image generation and visual classification applications. However, adversarial networks meet difficulties in combining the generative model and unstable training process. To overcome the problem, we combined the deep residual network with upsampling convolutional layers to construct the generative network. Moreover, the study shows that image generation and classification performance become more prominent when the residual layers include on the generator. The proposed network empirically shows that the ability to generate images with higher visual accuracy provided certain amounts of additional complexity using proper regularization techniques. Experimental evaluation shows that the proposed method is superior to image generation and classification tasks.

Generation and Transmission of Progressive Solid Models U sing Cellular Topology (셀룰러 토폴로지를 이용한 프로그레시브 솔리드 모델 생성 및 전송)

  • Lee, J.Y.;Lee, J.H.;Kim, H.;Kim, H.S.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.2
    • /
    • pp.122-132
    • /
    • 2004
  • Progressive mesh representation and generation have become one of the most important issues in network-based computer graphics. However, current researches are mostly focused on triangular mesh models. On the other hand, solid models are widely used in industry and are applied to advanced applications such as product design and virtual assembly. Moreover, as the demand to share and transmit these solid models over the network is emerging, the generation and the transmission of progressive solid models depending on specific engineering needs and purpose are essential. In this paper, we present a Cellular Topology-based approach to generating and transmitting progressive solid models from a feature-based solid model for internet-based design and collaboration. The proposed approach introduces a new scheme for storing and transmitting solid models over the network. The Cellular Topology (CT) approach makes it possible to effectively generate progressive solid models and to efficiently transmit the models over the network with compact model size. Thus, an arbitrary solid model SM designed by a set of design features is stored as a much coarser solid model SM/sup 0/ together with a sequence of n detail records that indicate how to incrementally refine SM/sup 0/ exactly back into the original solid model SM = SM/sup 0/.

Image Caption Generation using Recurrent Neural Network (Recurrent Neural Network를 이용한 이미지 캡션 생성)

  • Lee, Changki
    • Journal of KIISE
    • /
    • v.43 no.8
    • /
    • pp.878-882
    • /
    • 2016
  • Automatic generation of captions for an image is a very difficult task, due to the necessity of computer vision and natural language processing technologies. However, this task has many important applications, such as early childhood education, image retrieval, and navigation for blind. In this paper, we describe a Recurrent Neural Network (RNN) model for generating image captions, which takes image features extracted from a Convolutional Neural Network (CNN). We demonstrate that our models produce state of the art results in image caption generation experiments on the Flickr 8K, Flickr 30K, and MS COCO datasets.

Multimodal Context Embedding for Scene Graph Generation

  • Jung, Gayoung;Kim, Incheol
    • Journal of Information Processing Systems
    • /
    • v.16 no.6
    • /
    • pp.1250-1260
    • /
    • 2020
  • This study proposes a novel deep neural network model that can accurately detect objects and their relationships in an image and represent them as a scene graph. The proposed model utilizes several multimodal features, including linguistic features and visual context features, to accurately detect objects and relationships. In addition, in the proposed model, context features are embedded using graph neural networks to depict the dependencies between two related objects in the context feature vector. This study demonstrates the effectiveness of the proposed model through comparative experiments using the Visual Genome benchmark dataset.

2D Game Image Color Synthesis System Using Convolutional Neural Network (컨볼루션 인공신경망을 이용한 2차원 게임 이미지 색상 합성 시스템)

  • Hong, Seung Jin;Kang, Shin Jin;Cho, Sung Hyun
    • Journal of Korea Game Society
    • /
    • v.18 no.2
    • /
    • pp.89-98
    • /
    • 2018
  • The recent Neural Network technique has shown good performance in content generation such as image generation in addition to the conventional classification problem and clustering problem solving. In this study, we propose an image generation method using artificial neural network as a next generation content creation technique. The proposed artificial neural network model receives two images and combines them into a new image by taking color from one image and shape from the other image. This model is made up of Convolutional Neural Network, which has two encoders for extracting color and shape from images, and a decoder for taking all the values of each encoder and generating a combination image. The result of this work can be applied to various 2D image generation and modification works in game development process at low cost.

Optimal Allocation Method of Hybrid Active Power Filters in Active Distribution Networks Based on Differential Evolution Algorithm

  • Chen, Yougen;Chen, Weiwei;Yang, Renli;Li, Zhiyong
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1289-1302
    • /
    • 2019
  • In this paper, an optimal allocation method of a hybrid active power filter in an active distribution network is designed based on the differential evolution algorithm to resolve the harmonic generation problem when a distributed generation system is connected to the grid. A distributed generation system model in the calculation of power flow is established. An improved back/forward sweep algorithm and a decoupling algorithm are proposed for fundamental power flow and harmonic power flow. On this basis, a multi-objective optimization allocation model of the location and capacity of a hybrid filter in an active distribution network is built, and an optimal allocation scheme of the hybrid active power filter based on the differential evolution algorithm is proposed. To verify the effect of the harmonic suppression of the designed scheme, simulation analysis in an IEEE-33 nodes model and an experimental analysis on a test platform of a microgrid are adopted.

Streaming of Solid Models Using Cellular Topology (셀룰러 토폴로지를 이용한 솔리드 모델 스트리밍)

  • Lee, Jae-Yeol;Kim, Hyun
    • IE interfaces
    • /
    • v.16 no.spc
    • /
    • pp.87-92
    • /
    • 2003
  • Progressive mesh representation and generation have become one of the most important issues in network-based computer graphics. However, current researches are mostly focused on triangular mesh models. On the other hand, solid models are widely used in industry and are applied to advanced applications such as product design and virtual assembly. Moreover, as the demand to share and transmit these solid models over the network is emerging, the generation and the transmission of progressive solid models depending on specific engineering needs and purpose are essential. In this paper, we present a Cellular Topology-based approach to generating and transmitting progressive solid models from a feature-based solid model for internet-based design and collaboration. The proposed approach introduces a new scheme for storing and transmitting solid models over the network. The Cellular Topology (CT) approach makes it possible to effectively generate progressive solid models and to efficiently transmit the models over the network with compact model size.