• Title/Summary/Keyword: Neural Network Modeling

Search Result 740, Processing Time 0.029 seconds

The Modeling of Chaotic Nonlinear Systems Using Wavelet Neural Networks (웨이블렛 신경 회로망을 이용한 혼돈 비선형 시스템의 모델링)

  • Park, Sang-Woo;Choi, Jong-Tae;Yoon, Tae-Sung;Park, Jin-Bae;Choi, Yoon-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2034-2036
    • /
    • 2002
  • In this paper, we propose the modeling of a chaotic nonlinear system using wavelet neural networks. In our modeling, we used the parameter adjusting method as the training method of a wavelet neural network. The difference between the actual output of a nonlinear chaotic system and that of a wavelet neural network adjusts the parameters of a wavelet neural network using the gradient-descent method. To verify the efficiency of this paper, we perform the simulation using Duffing system, which is a representative continuous time chaotic nonlinear system.

  • PDF

Comparison of Latin Hypercube Sampling and Simple Random Sampling Applied to Neural Network Modeling of HfO2 Thin Film Fabrication

  • Lee, Jung-Hwan;Ko, Young-Don;Yun, Il-Gu;Han, Kyong-Hee
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.4
    • /
    • pp.210-214
    • /
    • 2006
  • In this paper, two sampling methods which are Latin hypercube sampling (LHS) and simple random sampling were. compared to improve the modeling speed of neural network model. Sampling method was used to generate initial weights and bias set. Electrical characteristic data for $HfO_2$ thin film was used as modeling data. 10 initial parameter sets which are initial weights and bias sets were generated using LHS and simple random sampling, respectively. Modeling was performed with generated initial parameters and measured epoch number. The other network parameters were fixed. The iterative 20 minimum epoch numbers for LHS and simple random sampling were analyzed by nonparametric method because of their nonnormality.

The study on the Optimal Control of Linear Track Cart Double Inverted Pendulum using neural network (신경망을 이용한 Liner Track Cart Double Inverted Pendulum의 최적제어에 관한 연구)

  • 金成柱;李宰炫;李尙培
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.227-233
    • /
    • 1996
  • The Inverted Pendulum has been one of most popular nonlinear dynamic systems for the exploration of control techniques. This paper presents a new linear optimal control techniques and nonlinear neural network learning methods. The multiayered neural networks are used to add nonlinear effects on the linear optimal regulator(LQR). The new regulator can compensate nonlinear system uncertainties that are not considered in the LQR design, and can tolerated a wider range of uncertainties than the LQR alone. The new regulator has two neural networks for modeling and control. The neural network for modeling is used to obtain a more accurate model than the given mathematical equations. The neural network for control is used to overcome deficiencies by adding corrections to the linear coefficients of the LQR and by adding nonlinear effects on the LQR. Computer simulations are performed to show the applicability and a more robust regulator than the LQR alone.

  • PDF

Modeling of Strength of High Performance Concrete with Artificial Neural Network and Mahalanobis Distance Outlier Detection Method (신경망 이론과 Mahalanobis Distance 이상치 탐색방법을 이용한 고강도 콘크리트 강도 예측 모델 개발에 관한 연구)

  • Hong, Jung-Eui
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.4
    • /
    • pp.122-129
    • /
    • 2010
  • High-performance concrete (HPC) is a new terminology used in concrete construction industry. Several studies have shown that concrete strength development is determined not only by the water-to-cement ratio but also influenced by the content of other concrete ingredients. HPC is a highly complex material, which makes modeling its behavior a very difficult task. This paper aimed at demonstrating the possibilities of adapting artificial neural network (ANN) to predict the comprresive strength of HPC. Mahalanobis Distance (MD) outlier detection method used for the purpose increase prediction ability of ANN. The detailed procedure of calculating Mahalanobis Distance (MD) is described. The effects of outlier compared with before and after artificial neural network training. MD outlier detection method successfully removed existence of outlier and improved the neural network training and prediction performance.

A Modular Neural Network for The GMA Welding Process Modelling (Modular 신경 회로망을 이용한 GMA 용접 프로세스 모델링)

  • 김경민;강종수;박중조;송명현;배영철;정양희
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.369-373
    • /
    • 2001
  • In this paper, we proposes the steps adopted to construct the neural network model for GMAW welds. Conventional, automated process generally involves sophisticated sensing and control techniques applied to various processing parameters. Welding parameters are influenced by numerous factors, such as welding current, arc voltage, torch travel speed, electrode condition and shielding gas type and flow rate etc. In traditional work, the structural mathematical models have been used to represent this relationship. Contrary to the traditional model method, neural network models are based on non-parametric modeling techniques. For the welding process modeling, the non-linearity at well as the coupled input characteristics makes it apparent that the neural network is probably the most suitable candidate for this task. Finally, a suitable proposal to improve the construction of the model has also been presented in the paper.

  • PDF

Rule-Based Fuzzy Polynomial Neural Networks in Modeling Software Process Data

  • Park, Byoung-Jun;Lee, Dong-Yoon;Oh, Sung-Kwun
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.3
    • /
    • pp.321-331
    • /
    • 2003
  • Experimental software datasets describing software projects in terms of their complexity and development time have been the subject of intensive modeling. A number of various modeling methodologies and modeling designs have been proposed including such approaches as neural networks, fuzzy, and fuzzy neural network models. In this study, we introduce the concept of the Rule-based fuzzy polynomial neural networks (RFPNN) as a hybrid modeling architecture and discuss its comprehensive design methodology. The development of the RFPNN dwells on the technologies of Computational Intelligence (CI), namely fuzzy sets, neural networks, and genetic algorithms. The architecture of the RFPNN results from a synergistic usage of RFNN and PNN. RFNN contribute to the formation of the premise part of the rule-based structure of the RFPNN. The consequence part of the RFPNN is designed using PNN. We discuss two kinds of RFPNN architectures and propose a comprehensive learning algorithm. In particular, it is shown that this network exhibits a dynamic structure. The experimental results include well-known software data such as the NASA dataset concerning software cost estimation and the one describing software modules of the Medical Imaging System (MIS).

Threshold Neural Network Model for VBR Video Trace (가변적 비디오 트랙을 위한 임계형 신경망 모델)

  • Jang, Bong-Seog
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.2
    • /
    • pp.34-43
    • /
    • 2006
  • This paper shows modeling methods for VBR video trace. It is well known that VBR video trace is characterized as longterm correlated and highly intermittent burst data. To analyze this, we attempt to model it using neural network with auxiliary linear structures derived from residual threshold. For testing purpose, we generate VBR video trace from chaotic nonlinear function combined with the geometric random noise. The modeling result of the generated data shows that the attempted method represents more accurately than the traditional neural network. However, we also found that combining hRU to the attempted modeling method can yield a closer agreement to statistical features of the generated data than the attempted modeling method alone.

  • PDF

Characteristics Modeling of Dynamic Systems Using Adaptive Neural Computation (적응 뉴럴 컴퓨팅 방법을 이용한 동적 시스템의 특성 모델링)

  • Kim, Byoung-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.4
    • /
    • pp.309-314
    • /
    • 2007
  • This paper presents an adaptive neural computation algorithm for multi-layered neural networks which are applied to identify the characteristic function of dynamic systems. The main feature of the proposed algorithm is that the initial learning rate for the employed neural network is assigned systematically, and also the assigned learning rate can be adjusted empirically for effective neural leaning. By employing the approach, enhanced modeling of dynamic systems is possible. The effectiveness of this approach is veri tied by simulations.

Fuzzy-Neural Modeling of a Human Operator Control System (인간 운용자 제어시스템의 퍼지-뉴럴 모델링)

  • Lee, Seok-Jae;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.474-480
    • /
    • 2007
  • This paper presents an application of intelligent modeling method to manual control system with human operator. Human operator as a part of controller is difficult to be modeled because of changes in individual characteristics and operation environment. So in these situation, a fuzzy model developed relying on the expert's experiences or trial and error may not be acceptable. To supplement the fuzzy model block, a neural network based modeling error compensator is incorporated. The feasibility of the present fuzzy-neural modeling scheme has been investigated for the real human based target tracking system.

Adaptively Trained Artificial Neural Network Identification of Left Ventricular Assist Device (적응 학습방식의 신경망을 이용한 좌심실보조장치의 모델링)

  • Kim, Sang-Hyun;Kim, Hun-Mo;Ryu, Jung-Woo
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.3
    • /
    • pp.387-394
    • /
    • 1996
  • This paper presents a Neural Network Identification(NNI) method for modeling of highly complicated nonlinear and time varing human system with a pneumatically driven mock circulatory system of Left Ventricular Assist Device(LVAD). This system consists of electronic circuits and pneumatic driving circuits. The initiation of systole and the pumping duration can be determined by the computer program. The line pressure from a pressure transducer inserted in the pneumatic line was recorded System modeling is completed using the adaptively trained backpropagation learning algorithms with input variables, heart rate(HR), systole-diastole rate(SDR), which can vary state of system. Output parameters are preload, afterload which indicate the systemic dynamic characteristics. Consequently, the neural network shows good approximation of nonlinearity, and characteristics of left Ventricular Assist Device. Our results show that the neural network leads to a significant improvement in the modeling of highly nonlinear Left Ventricular Assist Device.

  • PDF