• Title/Summary/Keyword: Nichrome Burn Wire Cutting

Search Result 2, Processing Time 0.017 seconds

Development of Flight Model of Segmented Nut Type Holding and Release Mechanism Using Burn Wire Cutting Method for On-orbit Verification (열선절단형 분리너트식 구속분리장치의 궤도검증을 위한 비행모델 개발)

  • Lee, Myeong-Jae;Lee, Yong-Keun;Kang, Suk-Joo;Oh, Hyun-Ung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.911-915
    • /
    • 2014
  • Pyrotechnic devices are widely used for space appendages. However, a cube satellite requirements do not permit the use of explosive pyrotechnic device. A nichrome burn wire release has typically been used for holding and release of deployable appendages of the cube satellite due to its simplicity and low cost. However, relatively low mechanical constraint force and system complexity for application of multi-deployable systems are disadvantages of the conventional mechanism. To overcome these drawbacks, we have developed a segmented nut type holding and release mechanism based on the nichrome burn wire release. The great advantages of the mechanism are much lower shock level and larger constraint force than the conventional mechanism using pyro. Flight model for on-orbit verification was developed and verified through release function test, vibration test and thermal vacuum test.

  • PDF

Performance Evaluation of Hinge Driving Separation Nut-type Holding and Releasing Mechanism Triggered by Nichrome Burn Wire

  • LEE, Myeong-Jae;LEE, Yong-Keun;OH, Hyun-Ung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.4
    • /
    • pp.602-613
    • /
    • 2015
  • As one of the mission payloads to be verified through the cube satellite mission of Cube Laboratory for Space Technology Experimental Project (STEP Cube Lab), we developed a hinge driving separation nut-type holding and releasing mechanism. The mechanism offers advantages, such as a large holding capacity and negligible induced shock, although its activation principle is based on a nylon cable cutting mechanism triggered by a nichrome burn wire generally used for cube satellite applications for the purpose of holding and releasing onboard appendages owing to its simplicity and low cost. The basic characteristics of the mechanism have been measured through a release function test, static load test under qualification temperature limits, and shock measurement test. In addition, the structural safety and operational functionality of the mechanism module under launch and on-orbit environments have been successfully demonstrated through a vibration test and thermal vacuum test.