• Title/Summary/Keyword: Nicotiana benthamiana

Search Result 84, Processing Time 0.032 seconds

NMMP1, a Matrix Metalloprotease in Nicotiana benthamiana Has a Role in Protection against Bacterial Infection

  • Kang, So-Ra;Oh, Sang-Keun;Kim, Jong-Joo;Choi, Do-Il;Baek, Kwang-Hyun
    • The Plant Pathology Journal
    • /
    • v.26 no.4
    • /
    • pp.402-408
    • /
    • 2010
  • Plant matrix metalloproteases (MMPs) are a family of apoplastic metalloproteases closely related to human matrilysins. Up-regulation of Nicotiana benthamiana matrix metalloprotease 1 (NMMP1) expression by treatment with pathogens, ethephon and aging indicates that the gene is related to plant defense and the aging process through ethylene signaling. NMMP1 expression was higher than in normal growth leaves following infection with an incompatible pathogen Pseudomonas syringae pv. tomato T1 or a compatible pathogen P. syringae pv. tabaci and in aged leaves. Transient overexpression of NMMP1 in N. benthamiana leaves lowered the growth of P. syringae pv. tabaci. However, NMMP1-silenced leaves showed increased growth of P. syringae pv. tabaci. These data strongly suggest that NMMP1 in N. benthamiana is a defense related gene, which is positively regulated by ethylene.

Virus Resistant and Susceptible Transgenic Nicotiana benthamiana Plants Expressing Coat Protein Gene of Zucchini green mottle mosaic virus for LMO Safety Assessment

  • Kim, Min-Jea;Choi, Sun-Hee;Kim, Tae-Sung;Park, Min-Hye;Lim, Hee-Rae;Oh, Kyung-Hee;Kim, Tae-San;Lee, Min-Hyo;Ryu, Ki-Hyun
    • The Plant Pathology Journal
    • /
    • v.20 no.3
    • /
    • pp.206-211
    • /
    • 2004
  • Transgenic Nicotiana benthamiana plants harboring coat protein (CP) gene of Zucchini green mottle mosaic virus (ZGMMV) were generated for virus-resistant screening and complementation analysis of related viruses for environmental safety assessment (SA) of living modified organism (LMO) purposes. Transformation of leaf disc of N.benthamiana was performed by using Agrobacterium-mediated method and the pZGC-PPGA748 containing the ZGMMV CP and NPTII genes. Two kinds of transgenic homozygous groups, virus-resistant and virus-susceptible N.benthamiana lines, were obtained by screening of challenging homologous virus for Tl generations. These two pathologically different lines can be useful for host-virus interactions and LMO environmental SA.

Study on Environmental Risk Assessment for Potential Effect of Genetically Modified Nicotiana benthamiana Expressing ZGMMV Coat Protein Gene

  • Kim, Tae-Sung;Yu, Min-Su;Koh, Kong-Suk;Oh, Kyoung-Hee;Ahn, Hong-Il;Ryu, Ki-Hyun
    • The Plant Pathology Journal
    • /
    • v.22 no.4
    • /
    • pp.353-359
    • /
    • 2006
  • Transgenic Nicotiana benthamiana plants harboring the coat protein(CP) gene of Zucchini green mottle mosaic virus(ZGMMV) were chosen as a model host for the environmental risk assessment of genetically modified plants with virus resistance. This study was focused on whether new virus type may arise during serial inoculation of one point CP mutant of ZGMMV on the transgenic plants. In vitro transcripts derived from the non-functional CP mutant were inoculated onto the virus-tolerant and -susceptible transgenic N. benthamiana plants. Any notable viral symptoms that could arise on the inoculated transgenic host plants were not detected, even though the inoculation experiment was repeated a total of ten times. This result suggests that potential risk associated with the CP-expressiing transgenic plants may not be significant. However, cautions must be taken as it does not guarantee environmental safety of these CP-mediated virus-resistant plants, considering the limited number of the transgenic plants tested in this study. Further study at a larger scale is needed to evaluate the environmental risk that might be associated with the CP-mediated virus resistant plant.

Tomato Yellow Leaf Curl China Virus Impairs Photosynthesis in the Infected Nicotiana benthamiana with βC1 as an Aggravating Factor

  • Farooq, Tahir;Liu, Dandan;Zhou, Xueping;Yang, Qiuying
    • The Plant Pathology Journal
    • /
    • v.35 no.5
    • /
    • pp.521-529
    • /
    • 2019
  • Tomato yellow leaf curl China virus is a species of the widespread geminiviruses. The infection of Nicotiana benthamiana by Tomato yellow leaf curl China virus (TYLCCNV) causes a reduction in photosynthetic activity, which is part of the viral symptoms. ${\beta}C1$ is a viral factor encoded by the betasatellite DNA ($DNA{\beta}$) accompanying TYLCCNV. It is a major viral pathogenicity factor of TYLCCNV. To elucidate the effect of ${\beta}C1$ on plants' photosynthesis, we measured the relative chlorophyll (Chl) content and Chl fluorescence in TY-LCCNV-infected and ${\beta}C1$ transgenic N. benthamiana plants. The results showed that Chl content is reduced in TYLCCNV A-infected, TYLCCNV A plus $DNA{\beta}$ (TYLCCNV A + ${\beta}$)-infected and ${\beta}C1$ transgenic plants. Further, changes in Chl fluorescence parameters, such as electron transport rate, $F_v/F_m$, NPQ, and qP, revealed that photosynthetic efficiency is compromised in the aforementioned N. benthamiana plants. The presense of ${\beta}C1$ aggravated the decrease of Chl content and photosynthetic efficiency during viral infection. Additionally, the real-time quantitative PCR analysis of oxygen evolving complex genes in photosystem II, such as PsbO, PsbP, PsbQ, and PsbR, showed a significant reduction of the relative expression of these genes at the late stage of TYLCCNV A + ${\beta}$ infection and at the vegetative stage of ${\beta}C1$ transgenic N. benthamiana plants. In summary, this study revealed the pathogenicity of TYLCCNV in photosynthesis and disclosed the effect of ${\beta}C1$ in exacerbating the damage in photosynthesis efficiency by TYLCCNV infection.

Silencing of NbNAP1 Encoding a Plastidic SufB-like Protein Affects Chloroplast Development in Nicotiana benthamiana

  • Ahn, Chang Sook;Lee, Jeong Hee;Pai, Hyun-Sook
    • Molecules and Cells
    • /
    • v.20 no.1
    • /
    • pp.112-118
    • /
    • 2005
  • It was previously shown that AtNAP1 is a plastidic SufB protein involved in Fe-S cluster assembly in Arabidopsis. In this study, we investigated the effects of depleting SufB protein from plant cells using virus-induced gene silencing (VIGS). VIGS of NbNAP1 encoding a Nicotiana benthamiana homolog of AtNAP1 resulted in a leaf yellowing phenotype. NbNAP1 was expressed ubiquitously in plant tissues with the highest level in roots. A GFP fusion protein of the N-terminal region (M1-V103) of NbNAP1 was targeted to chloroplasts. Depletion of NbNAP1 resulted in reduced numbers of chloroplasts of reduced size. Mitochondria also seemed to be affected. Despite the reduced number and size of the chloroplasts in the NbNAP1 VIGS lines, the expression of many nuclear genes encoding chloroplast-targeted proteins and chlorophyll biosynthesis genes remained unchanged.

Virus-resistant and susceptible transgenic Nicotiana benthamiana plants expressing coat protein gene of Zochini green mottle mosaic virus for LMO safety assessment

  • Park, M.H.;B.E. Min;K.H. Ryu
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.146.1-146
    • /
    • 2003
  • Transgenic Nicotiana benthmiana plants harboring and expressing coat protein (CP) gene of Zucchini green mottle mosaic virus (ZGMMV) were generated for both virus-resistant screening and complementation analysis of related viruses and environmental safety assessment (SA) of living modified organism (LMO) purposes. Transformation of leaf disc of N. benthamiana was performed using Agrobacterium-mediated method and the pZGCPPGA748 containing the ZGMMV CP and NPTII genes. Two kinds of transgenic homozygous groups, virus-resistant and -susceptible lines, were obtained by screening of challenging homologous virus for T1 generations. Complementation of CP-deficient related virus was analyzed using the susceptible line of ZGMMV. These two pathologically different lines can be useful for host-virus interactions and LMO environmental SA.

  • PDF

Antimicrobial Activity of Bacteriophage Endolysin Produced in Nicotiana benthamiana Plants

  • Kovalskaya, Natalia;Foster-Frey, Juli;Donovan, David M.;Bauchan, Gary;Hammond, Rosemarie W.
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.1
    • /
    • pp.160-170
    • /
    • 2016
  • The increasing spread of antibiotic-resistant pathogens has raised the interest in alternative antimicrobial treatments. In our study, the functionally active gram-negative bacterium bacteriophage CP933 endolysin was produced in Nicotiana benthamiana plants by a combination of transient expression and vacuole targeting strategies, and its antimicrobial activity was investigated. Expression of the cp933 gene in E. coli led to growth inhibition and lysis of the host cells or production of trace amounts of CP933. Cytoplasmic expression of the cp933 gene in plants using Potato virus X-based transient expression vectors (pP2C2S and pGR107) resulted in death of the apical portion of experimental plants. To protect plants against the toxic effects of the CP933 protein, the cp933 coding region was fused at its Nterminus to an N-terminal signal peptide from the potato proteinase inhibitor I to direct CP933 to the delta-type vacuoles. Plants producing the CP933 fusion protein did not exhibit the severe toxic effects seen with the unfused protein and the level of expression was 0.16 mg/g of plant tissue. Antimicrobial assays revealed that, in contrast to gram-negative bacterium E. coli (BL21(DE3)), the gram-positive plant pathogenic bacterium Clavibacter michiganensis was more susceptible to the plant-produced CP933, showing 18% growth inhibition. The results of our experiments demonstrate that the combination of transient expression and protein targeting to the delta vacuoles is a promising approach to produce functionally active proteins that exhibit toxicity when expressed in plant cells.

Molecular Characterization of the Perilla frutescens Limonene Gene (PFLS) by Agroinfiltration into Nicotiana benthamiana (들깨 Limonene 유전자의 담배식물(Nicotiana benthamiana)내 Agroinfiltration에 의한 분자적 특성)

  • Seong, Eun-Soo;Seo, Eun-Won;Kim, Hyoung-Seok;Heo, Kweon;Lee, Ju-Kyung;Chung, Ill-Min;Ghimire, Bimal Kumar;Kim, Myong-Jo;Lim, Jung-Dae;Yu, Chang-Yeon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.1
    • /
    • pp.33-38
    • /
    • 2009
  • The full-length cDNA encoding Perilla frutescens limonene synthase (PFLS) (603 amino acids, GenBank accession no. D49368) was cloned. To elucidate the role of PFLS in gene regulation, we transiently transformed full-length PFLS into tobacco plants. PFLS mRNA was first detected in the intact leaves of the plants at 6 h, and the LS transcript level increased after 12 h in leaves treated with oxidative stress-related chemicals. The transient overexpression of PFLS resulted in increased transcription of NbPR1 and NbSIP in Nicotiana benthamiana leaves. Thus, our result confirmed that the infiltration of PFLS gene act as a transcriptional regulator of NbPR1 or NbSIP genes in the tobacco.

Expression of prune dwarf Ilarvirus coat protein sequences in Nicotiana benthamiana plants interferes with PDV systemic proliferation

  • Raquel, Helena;Lourenco, Tiago;Moita, Catarina;Oliveira, M. Margarida
    • Plant Biotechnology Reports
    • /
    • v.2 no.1
    • /
    • pp.75-85
    • /
    • 2008
  • Prune dwarf virus (PDV) is an Ilarvirus systemically infecting almond trees and other Prunus species and spreading through pollen, among other means. We have studied strategies based on coat protein (cp) gene to block PDV replication in host plant cells. A Portuguese isolate of PDV was obtained from infected almond leaves and used to produce the cDNA of the cp gene. Various constructs were prepared based on this sequence, aiming for the transgenic expression of the original or modified PDV coat protein (cpPDVSense and cpPDVMutated) or for the expression of cpPDV RNA (cpPDVAntisense and cpPDVwithout start codon). All constructs were tested in a PDV host model, Nicotiana benthamiana, and extensive molecular characterization and controlled infections were performed on transformants and their progenies. Transgenic plants expressing the coat protein RNA were able to block the proliferation of a PDV isolate sharing only 91% homology with the isolate used for cpPDV cloning, as evaluated by DAS-ELISA on newly developed leaves. With cp expression, the blockage of PDV proliferation in newly developed leaves was only achieved with the construct cpPDV Mutated, where the coat protein has a substitution in the 14th aa residue, with arginine replaced by alanine. This result points to a possible role of the mutated amino acid in the virus ability to replicate and proliferate. This work reveals the possibility of achieving protection against PDV through either coat protein RNA or mutated cp sequence.

Silencing of CaCDPK4 ( Capsicum annuum Calcium Dependent Protein Kinase) and ItsOrtholog, NbCDPK5 Induces Cell Death in Nicotiana benthamiana

  • Eunsook Chung;Kim, Young-Cheol;Oh, Sang-Keun;Younghee Jung;Kim, Soo-Yong;Park, Doil
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.77.1-77
    • /
    • 2003
  • We have isolated a full-length cDNA clone, CaCDPK4 encoding a typical calcium-dependent protein kinase (CDPK) from hot pepper cDNA library. Genomic southern blot analysis showed that it belongs to a multigene family, but represents a single copy gone in hot pepper genome. RNA expression pattern of this gene revealed that it is induced by infiltration of Xanthomonas axonopodis pv. glycines Bra into hot pepper leaves but not by water deficit stress. However, high salt treatment of NaCl (0.4 M) solution to hot pepper plants strongly induced CaCDPK4 gene. In addition, this gene is weakly responsive to the exogenous application of salicylic acid or ethephon. Biochemical study of the GST-CaCDPK4 recominant protein showed that it autophosphorylates in vitro and the presence of EGTA, a calcium chelater, eliminates the kinase activity of the recombinant protein. As a way to identify the in vivo function of CaCDPK4 in plants, VIGS (Virus-Induced Gene Silencing) was employed. Agrobacterium-mediated TRV silencing construct containing the kinase and calmodulin domain of CaCDPK4 resulted in cell death of Nicotiana benthamiana plants. A highly homologous H benthamiana CDPK gene, NbCDPK5, to CaCDPK4 was cloned from N. benthamiana cDNA library. VIGS of NbCDPK5 also resulted in cell death. The molecular characterization of this cell death phenotype is being under investigation.

  • PDF