• Title/Summary/Keyword: Nitration reaction

Search Result 33, Processing Time 0.027 seconds

Kinetics of Horseradish Peroxidase-Catalyzed Nitration of Phenol in a Biphasic System

  • Kong, Mingming;Zhang, Yang;Li, Qida;Dong, Runan;Gao, Haijun
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.297-305
    • /
    • 2017
  • The use of peroxidase in the nitration of phenols is gaining interest as compared with traditional chemical reactions. We investigated the kinetic characteristics of phenol nitration catalyzed by horseradish peroxidase (HRP) in an aqueous-organic biphasic system using n-butanol as the organic solvent and ${NO_2}^-$ and $H_2O_2$ as substrates. The reaction rate was mainly controlled by the reaction kinetics in the aqueous phase when appropriate agitation was used to enhance mass transfer in the biphasic system. The initial velocity of the reaction increased with increasing HRP concentration. Additionally, an increase in the substrate concentrations of phenol (0-2 mM in organic phase) or $H_2O_2$ (0-0.1 mM in aqueous phase) enhanced the nitration efficiency catalyzed by HRP. In contrast, high concentrations of organic solvent decreased the kinetic parameter $V_{max}/K_m$. No inhibition of enzyme activity was observed when the concentrations of phenol and $H_2O_2$ were at or below 10 mM and 0.1 mM, respectively. On the basis of the peroxidase catalytic mechanism, a double-substrate ping-pong kinetic model was established. The kinetic parameters were ${K_m}^{H_2O_2}=1.09mM$, ${K_m}^{PhOH}=9.45mM$, and $V_{max}=0.196mM/min$. The proposed model was well fit to the data obtained from additional independent experiments under the suggested optimal synthesis conditions. The kinetic model developed in this paper lays a foundation for further comprehensive study of enzymatic nitration kinetics.

Synthesis of Aniline and Isoquinoline derivatives using Deamination and Nitration (Deamination과 Nitration반응을 이용한 아닐린과 Isoquinoline 유도체의 합성)

  • Yoon, Cheol-Hun;Lee, Ki-Chang
    • Journal of the Korean Applied Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.49-57
    • /
    • 1998
  • This study is to develop a new synthetic method for the nitroarenes via non-electrophilic substitution. Direct nitration at the C-1 position of isoquinoline has never been reported and substitution in isoquinoline under the normal nitration condition occurs at C-5 and C-8. We have demonstrated a facile one-step sythetic method for the nitration of isoquinolines at the C-1 position, which involves the electrophilic attack of a $DMSO-Ac_2O$ complex, followed by nucleophilic addition of nitrate ion to this intermediate. Since the reaction is simple and mild, this method has preparative merit since 1-nitroisoquinolines are not readily accessible by other methods. Application to the synthesis of poly nitroarenes from the corresponding anilines was also described.

Synthesis of Dinitro ${\alpha},{\omega}$--Diols from ${\alpha},{\omega}$--Diols (${\alpha},{\omega}$-디올로부터 디니트로 ${\alpha},{\omega}$--디올의 합성)

  • Kyoo-Jyun Chung;Il-Gyo Park
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.2
    • /
    • pp.244-248
    • /
    • 1993
  • Nitroalcohols were prepared by a substitution reaction from the corresponding bromoalcohols. The second nitro group was introduced via different methods depending on the carbon chain length. 3,3-Dinitro-1-propanol was obtained by an intramolecular varient of the alkaline nitration method. Whereas 5,5-dinitro-1-pentanol was given by the catalytic oxidative nitration. 3,3-Dinitro-1-propanol and 5,5-dinitro-1-pentanol were converted to 3,3-dinitro-1,6-hexanediol and 4,4-dinitro-1,8-octanediol via Michael reaction with acrolein followed by the reduction of the resulting aldehydes. Acetyl group was a good protecting group for the substitution reaction while THP was for the catalytic oxidative nitration.

  • PDF

Facile Synthesis of $(\pm)$-2-[p-(1-Oxo-2-isoindolinyl)phenyl]butyric acid (Indobufen) ($(\pm)$-2-[p-(1-Oxo-2-isoindolinyl)phenyl]butyric acid(인도부펜)의 합성)

  • 최홍대;강병원;마정주;윤호상
    • YAKHAK HOEJI
    • /
    • v.35 no.5
    • /
    • pp.389-393
    • /
    • 1991
  • A convenient method for the synthesis of indobufen, which is a potent antiinflammatory agent, was described. Ethyl 2-phenylbutyrate(4) was prepared by Friedel-Crafts reaction of benzene with ethyl $\alpha$-chloro-$\alpha$-(methylthio)acetate(l) followed by ethylation and desulfurization of the resultant ethyl 2-(methylthio)phenylacetate(2). Ethyl 2-(p-aminophenyl)butyrate(6) was prepared by nitration of (4) and successive reduction of ethyl 2-(p-nitrophenyl) butyrate(5). Indobufen was obtained by condensation reaction of (6) with phthalic anhydride followed by reduction and hydrolysis of the resultant ethyl 2-[p-(1, 3-dioxo-2-isoindolinyl)phenyl]butyrate(7).

  • PDF

Facile Synthesis of 2-(p-Methylallylaminophenyl)propionic Acid (Alminoprofen) (2-(p-메틸알릴아미노페닐)프로판산의 합성)

  • Choi, Hong-Dae;Yun, Ho-Sang;Kang, Byung-Won;Ma, Jung-Joo;Son, Byeng-Wha
    • YAKHAK HOEJI
    • /
    • v.36 no.1
    • /
    • pp.12-16
    • /
    • 1992
  • A new method for the synthesis of alminoprofen, which is a non-steroidal antiinflammatory agent, was described. Ethyl 2-phenyl-propionate(4) was prepared by Friedel-Crafts reaction of benzene with ethyl ${\alpha}-chloro-{\alpha}(methylthio)acetate(1)$, followed by methylation and desulfurization of the resultant ethyl 2-(methylthio)phenylacetate(2). Ethyl 2-(p-aminophenyl)propionate(6) was obtained by nitration of (4) and successive reduction of ethyl 2-(p-nitrophenyl)propionate(5). Alminoprofen was synthesized by reaction of (6) with methallyl chloride, followed by hydrolysis of the resultant ethyl 2-(p-methylallylaminophenyl)propionate (7).

  • PDF

Regioselectivity in Nitration of Biphenyl Derivatives (Biphenyl 유도체의 니트로화 반응에서 위치선택성)

  • Lee, Kwang Jae;Lee, Sang Hee
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.6
    • /
    • pp.538-545
    • /
    • 2001
  • The ratio of regioisomers in nitration of biphenyl derivatives containing electron-with-drawing group was examined. The ratio of isomers was determined efficiently by quantitative analysis of $^1$H NMR spectrum of product mixture based on $^1$H NMR spectrum of each isomer. Some isomers were isolated after chemical transformation, nitro to amine or carboxylic acid to its ethyl ester, because direct separation was very difficult. To improve the regiselectivity, representative several reaction conditions were tried and the NMR method was applied to determine regioselectivity in nitration of biphenyl derivatives. It was observed that the regioselectivity depend on not only reaction conditions but also position and kind of substituents.

  • PDF

Nitration of Toluene with NO2-O3 (이산화질소-오존을 이용한 톨루엔의 니트로화 반응)

  • Cho, Jin-Ku;Kim, Young-Tae;Kim, Young Gyu;Lee, Yoon-Sik
    • Applied Chemistry for Engineering
    • /
    • v.9 no.7
    • /
    • pp.1085-1089
    • /
    • 1998
  • The well-established nitric acid-sulfuric acid mixed acid process for the nitration of aromatic compounds has serious problems due to the large amount of waste acids and severe reaction conditions. Nitration of toluene can be conducted using nitrogen dioxide and ozone instead of mixed acid. We found that conc. nitric acid increased the reactivity as catalyst and the amount of nitrogen dioxide controlled the extent of nitration. Dinitration proceeded to more than 92 mole % conversion within 2 hr at $0^{\circ}C$ with 6 eq. of nitrogen dioxide and 2 eq./hr of ozone flow. Toluene completed mononitration within 30 min using 3 eq. of nitrogen dioxide, 3 eq. of nitric acid, and 1.5 eq./hr of ozone flow. As a clean process of aromatic nitration, this method is expected to replace the present process which causes the environmental problems.

  • PDF

The Synthesis of p-Dodecylbenzylidene-p'-hexyloxyaniline (p-Dodecylbenzylidene-p'-hexyloxyaniline의 합성)

  • Jeong, Noh-Hee;Kwack, Kwang-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.198-203
    • /
    • 2003
  • In this study, we synthesized p-hexyloxybenzaldehyde(HBA) by using p-hydroxybenzaldehyde and n-hexylchloride. p-dodecylaniline(DDA) prepared by nitration and reduction of dodecylbenzene. The schiff base, p-dodecylbenzylidene-$p^\prime$-hexyloxyaniline (DBHA) was synthesized by reaction of HBA and DDA. The color of synthetic compound was pale-brown and the yield was 62%. All the synthetic compounds were identified by TLC, FT-IR and ${^{i}H}$-NMR.In this study, we synthesized p-hexyloxybenzaldehyde(HBA) by using p-hydroxybenzaldehyde and n-hexylchloride. p-dodecylaniline(DDA) prepared by nitration and reduction of dodecylbenzene. The schiff base, p-dodecylbenzylidene-p'-hexyloxyaniline(DBHA) was synthesized by reaction of HBA and DDA. The color of synthetic compound was pale-brown and the yield was 62%. All the synthetic compounds were identified by TLC, FT-IR and $^1H$-NMR.

Nitration of Chlorobenzenes with NO2-O3 (이산화질소-오존을 이용한 클로로벤젠들의 니트로화 반응)

  • Lee, Bon-Su;Chung, Kyoo-Hyun;Lee, Won-Heui;Kim, Young-Su;Kim, Tae-Hyoung
    • Applied Chemistry for Engineering
    • /
    • v.7 no.3
    • /
    • pp.530-535
    • /
    • 1996
  • Nitrochlorobenezenes are used as intermediates for dyes, pharmaceuticals and perfumes. By far the most common industrial nitration process employs a mixture of nitric acid and sulfuric acid. Due to water formed in the reaction, the mixed acid nitration requires subsequent separation of spent acid, mainly dilute sulfuric acid. In the stream of ozone, nitrogen dioxide can be used as a nitrating agent for the nitration of chlorobenzene. With 6eq of $NO_2$ and 1.0eq/hr of ozone flow, the mononitration of chlorobenzene ended within 3hr at $0^{\circ}C$ while the dinitration of chlorobenzene did in 12hr. This method can be employed for the nitration of some aromatic compounds to reduce pollutants from the present mixed-acid process.

  • PDF

Effective Liquid-phase Nitration of Benzene Catalyzed by a Stable Solid Acid Catalyst: Silica Supported Cs2.5H0.5PMo12O40

  • Gong, Shu-Wen;Liu, Li-Jun;Zhang, Qian;Wang, Liang-Yin
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1279-1284
    • /
    • 2012
  • Silica supported $Cs_{2.5}H_{0.5}PMo_{12}O_{40}$ catalyst was prepared through sol-gel method with ethyl silicate-40 as silicon resource and characterized by X-ray diffraction, infrared spectroscopy, scanning electron microscopy, nitrogen adsorption-desorption and potentiometric titration methods. The $Cs_{2.5}H_{0.5}PMo_{12}O_{40}$ particles with Keggin-type structure well dispersed on the surface of silica, and the catalyst exhibited high surface area and acidity. The catalytic performance of the catalysts for benzene liquid-phase nitration was examined with 65% nitric acid as nitrating agent, and the effects of various parameters were tested, which including temperature, time and amount of catalyst, reactants ratio, especially the recycle of catalyst was emphasized. Benzene was effectively nitrated to mononitro-benzene with high conversion (95%) in optimized conditions. Most importantly, the supported catalyst was proved has excellent stability in the nitration progress, and there were no any other organic solvent and sulfuric acid were used in the reaction system, so the liquid-phase nitration of benzene that we developed was an eco-friendly and attractive alternative for the commercial technology.