• Title/Summary/Keyword: Nitrogen

Search Result 15,986, Processing Time 0.044 seconds

Acetic Acid Gas Adsorption Characteristics of Activated Carbon Fiber by Plasma and Direct Gas Fluorination (플라즈마 및 직접 기상 불소화에 따른 활성탄소섬유의 초산가스 흡착 특성)

  • Lee, Raneun;Lim, Chaehun;Kim, Min-Ji;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.32 no.1
    • /
    • pp.55-60
    • /
    • 2021
  • Fluorination was carried out to improve the adsorption performance of pitch-based activated carbon fibers (ACFs) onto acetic acid. Both plasma and direct gas fluorination were used for fluorination, and the acetic acid gas adsorption performance of fluorinated ACFs was investigated. X-ray photoelectron spectroscopy (XPS) is analyzed to determine the surface characteristics of ACFs, and the pore characteristics were analyzed by 77 K nitrogen adsorption. An adsorption performance was measured through gas chromatography, and it was confirmed that the breakthrough time of plasma fluorinated sample was 790 min and that the breakthrough time was delayed compared to that of using untreated one of 650 min. However, the breakthrough time of direct gas fluorinated sample was 390 min, indicating that the adsorption performance was inhibited. The plasma fluorinated ACFs showed an increase in the adsorption performance due to an electrostatic attraction between the acetic acid gas (CH3COOH) with the fluorine group introduced to the surface without changing its specific surface area. On the other hand, the specific surface area of the direct gas fluorinated ACFs decreased significantly up to 55%, and the physical adsorption effect on the acetic acid gas also reduced.

Experimental Study of Transition to Secondary Acoustic Instability at Downward-Propagating Premixed Flame in a Tube (튜브 내 하향 전파하는 예혼합 화염의 이차 열음향 불안정성 천이에 관한 실험적 연구)

  • Park, Juwon;Kim, Daehae;Park, Dae Geun;Yoon, Sung Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.7
    • /
    • pp.915-921
    • /
    • 2020
  • Thermoacoustic instability caused by air conditioning in a combustion chamber has emerged as a problem that must be solved to establish a stable combustion system. Thermoacoustic instability is largely divided into primary and secondary acoustic instability. In this study, an experimental study of the effects of heat losses was conducted to investigate the mechanism of secondary acoustic instability. To generate the secondary acoustic instability, a quarter-wavelength resonator with one open end and one closed end was used, and the inside of the resonator was filled with premixed gases. Subsequently, secondary acoustic instability with downward-propagating flames could be realized via thermal expansion on the burnt side. To control heat losses qualitatively, an additional co-axial tube was installed in the resonator with air or nitrogen supply. Therefore, additional diffusion flames can be formed at the top of the resonator depending on the injection of the oxidizer into the co-axial tube when rich premixed flames are used. Consequently, secondary acoustic instability could not be achieved by increasing heat losses to the ambient when the additional diffusion flame was not formed, and the opposite result was obtained with the additional diffusion flame.

Change of dry matter and nutrients contents in plant bodies of LID and roadside (도로변 및 LID 시설 내 식생종류별 식물체 내 건물률 및 영양염류 함량 변화)

  • Lee, YooKyung;Choi, Hyeseon;Jeon, Minsu;Kim, Leehyung
    • Journal of Wetlands Research
    • /
    • v.23 no.1
    • /
    • pp.35-43
    • /
    • 2021
  • The application of nature-based solutions, such as low impact development (LID) techniques and green infrastructures, for stormwater management continue to increase in urban areas. Plants are usually utilized in LID facilities to improve their pollutant removal efficiency through phytoremediation. Plants can also reduce maintenance costs and frequency by means of reducing the accumulation of pollutants inside the facility. Plants have long been used in different LID facilities; however, proper plant-selection should be considered since different species tend to exhibit varying pollutant uptake capabilities. This study was conducted to investigate the pollutant uptake capabilities of plants by comparing the dry matter and nutrient contents of different plant species in roadsides, LID facilities, and landscape areas. The dry matter content of the seven herbaceous plants, shrubs, and arboreal trees ranged from 60% to 90%. In terms of nutrient content, the total nitrogen (TN) concentration in the tissues of herbaceous plants continued to increase until the summer season, but gradually decreased in the succeeding periods. TN concentrations in shrubs and trees were observed to be high from early spring up to the late summer seasons. All plant samples collected from the LID facility exhibited high TP content, indicating that the vegetative components of LID systems are efficient in removing phosphorus. Overall, the nutrient content of different plant species was found to be highly influenced by the urban environment which affected the stormwater runoff quality. The results of this study can be beneficial for establishing plant selection criteria for LID facilities.

Application of CFD to Design Procedure of Ammonia Injection System in DeNOx Facilities in a Coal-Fired Power Plant (석탄화력 발전소 탈질설비의 암모니아 분사시스템 설계를 위한 CFD 기법 적용에 관한 연구)

  • Kim, Min-Kyu;Kim, Byeong-Seok;Chung, Hee-Taeg
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.61-68
    • /
    • 2021
  • Selective catalytic reduction (SCR) is widely used as a method of removing nitrogen oxide in large-capacity thermal power generation systems. Uniform mixing of the injected ammonia and the inlet flue gas is very important to the performance of the denitrification reduction process in the catalyst bed. In the present study, a computational analysis technique was applied to the ammonia injection system design process of a denitrification facility. The applied model is the denitrification facility of an 800 MW class coal-fired power plant currently in operation. The flow field to be solved ranges from the inlet of the ammonia injection system to the end of the catalyst bed. The flow was analyzed in the two-dimensional domain assuming incompressible. The steady-state turbulent flow was solved with the commercial software named ANSYS-Fluent. The nozzle arrangement gap and injection flow rate in the ammonia injection system were chosen as the design parameters. A total of four (4) cases were simulated and compared. The root mean square of the NH3/NO molar ratio at the inlet of the catalyst layer was chosen as the optimization parameter and the design of the experiment was used as the base of the optimization algorithm. The case where the nozzle pitch and flow rate were adjusted at the same time was the best in terms of flow uniformity.

Comparison of hematologic and biochemical values in htPA transgenic pigs (사람 조직 플라스미노겐 활성인자 생산용 형질전환 돼지에서의 혈액학적 성상 비교)

  • Park, Mi-Ryung;Hwang, In-Sul;Lee, Seunghoon;Lee, Hwi-Cheul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.395-400
    • /
    • 2020
  • Pigs have been used widely in biomedical research owing to their physiologic and anatomic similarities to humans. Analysis of the hematologic and biochemical values in pigs is an important basis for biomedical research and veterinary clinical diagnosis, but research on transgenic pigs has been sparse. This study was conducted to obtain basic data on transgenic pigs and to describe and compare the reference values for hematologic and biochemical parameters in human tissue plasminogen activator (htPA) transgenic pigs vs normal pigs. Blood samples were obtained from 7 normal LY (Landrace-Yorkshire crossbred) pigs and 8 transgenic pigs and 16 hematologic and 15 serum biochemical parameters were tested. Among the hematologic parameters tested, significant differences were observed in the red blood cells (RBC), mean red blood cell hemoglobin (MCH), and lymphocytes (LYM), between the non-transgenic and transgenic pigs. Among the biochemical parameters tested, the blood urea nitrogen (BUN), total protein (TP), cholesterol (CHOL), alanine aminotransferase (ALT), creatinine (CREA), gamma glutamyl transpeptidase (GGT), globin (GOB), and amylase (AMYL) showed significant differences between the two groups. Thus, the values determined in this study can be used as basic reference values for transgenic pigs and will contribute to their use in biomedical research.

Effect of Ensilage of Rye Treated with Formic Acid and Lactic Acid Bacteria Inoculant on Ruminal Fermentation Characteristics (개미산과 유산균제 첨가 베일 사일리지의 발효 차이가 반추위 발효 특성에 미치는 영향)

  • Kim, Jayeon;Bharanidharan, Rajaraman;Bang, Geumhwi;Jeong, Soonwoo;Park, Seol Hwa;Oh, Young Kyoon;Kim, Jong Geun;Kim, Kyoung Hoon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.40 no.4
    • /
    • pp.244-250
    • /
    • 2020
  • This study investigated the effects of silage additives on rumen fermentation characteristics of rye silage. Rye was harvested at ripening stage and treated with different additives in quadruplicate following: without additive (control), with either lactic acid bacteria inoculant (LAB), formic acid (FA), or Ca-formate (Ca-FA). Overall, ensiling characteristics of FA and Ca-FA silages contained 4-fold more (P<0.05) butyrate and 2-fold more (P<0.05) NH3-N concentration (% total nitrogen) than those of control and LAB silages. Cows fed LAB silage showed a diurnal trend with the highest values of propionate concentration compared to the control at 1, 2 and 3 hr after feeding. In contrast, FA and Ca-FA silages increased the proportion of butyrate significantly (P<0.05) at all sampling times compared to control and LAB silage. In conclusion, Forage rye treated with FA or Ca-FA showed different fermentation characteristics during ensilage and in the rumen compared to LAB silage. Further studies are needed to evaluate whether different fermentation characteristics in the rumen between LAB and FA silages had effect on partitioning of nutrients between milk production and body tissue.

Application of Italian Ryegrass-Rice Double Cropping Systems to Evaluate the Physicochemical Properties of Soil and Yield and Quality of Rice in Paddy Field in Southern Parts of Korea (남부지역 논에서 토양의 이화학적 특성 및 벼의 생산성과 미질 향상을 위한 이탈리안 라이그라스-벼 이모작 작부체계의 적용)

  • Oh, Seo Young;Oh, Seong Hwan;Seo, Jong Ho;Choi, Jisu
    • Journal of Environmental Science International
    • /
    • v.30 no.8
    • /
    • pp.659-671
    • /
    • 2021
  • The physicochemical properties of soil and the yield and quality of rice (Oryza sativa L. cv. Sailmi) were assessed using Italian ryegrass (Lolium multiflorum Lam. cv. Kowinearly)-rice double cropping systems in the paddy fields at Goseong and Miryang in southern Korea. The average temperatures during the ripening period were approximately 1 ℃ higher than the optimal temperature for rice ripening and the sunshine duration was reduced by frequent rainfall. Consequently, it was slightly below the optimal conditions required for rice ripening. In the soil at Goseong, winter Italian ryegrass cropping increased the pH, electrical conductivity, and the contents of organic matter, total nitrogen (T-N), available P2O5, K, Ca, and Mg than winter fallowing. Particularly, the contents of T-N and available P2O5increased significantly. In the soil at Miryang, Italian ryegrass slightly increased the electrical conductivity and the T-N, Mg, and Na contents. Therefore, winter Italian ryegrass cropping improved the physicochemical properties of paddy soils; however, Italian ryegrass-rice double cropping slightly reduced the culm length at both Goseong and Miryang, without markedly changing the panicle length or number compared to fallow-rice cropping. Furthermore, at Goseong, Italian ryegrass-rice double cropping slightly decreased the spikelet number and milled rice yield, and increased the ripened grain rate; however, at Miryang, contrasting results were observed. In addition, fallow-rice cropping revealed no differences in the head rice or opaque rice rates. The protein content was slightly increased in Italian ryegrass-rice double cropping, without significant changes in the amylose content or Toyo value, compared to that in fallow-rice cropping. The peak and breakdown viscosities were slightly decreased. These results indicate that winter Italian ryegrass cropping might alter rice taste but may not exhibit remarkable negative effects on rice cultivation. Therefore, Italian ryegrass-rice double cropping system is recommended for paddy fields in southern Korea. Nevertheless, to increase the rice yield and quality, fertilization standards for rice cropping that consider the changes in the T-N and organic matter contents in paddy fields caused by winter Italian ryegrass cropping need to be established.

A Study on the Emission and Particulate Matter of a Heavy Duty Natural Gas Engine According to Gas Composition under certification tests (인증시험 조건에서 가스조성 변화에 따른 대형 천연가스 엔진 배기가스 및 입자상 물질 배출 특성에 관한 연구)

  • Choi, Ji-Seon;Park, Cheol-Woong;Jang, Hyoung-Jun;Kim, Chang-Gi
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.6
    • /
    • pp.66-73
    • /
    • 2021
  • In this study, The full load test and WHTC mode test were performed to examine the effect on a heavy duty natural gas engine according to the type of standard gas for certification to check engine performance and exhaust characteristics. Two types of standard gas (Gr, G23) and commercially available natural gas were applied as the fuel used. As a result of the test results of three natural gases with different fuel compositions, G23 with a high nitrogen content was inferior in torque, fuel consumption, and thermal efficiency conditions. In addition, when evaluated in the WHTC mode it was possible to obtain a result that satisfies the EURO VI regulation. However, compared to the other two fuels, the emission characteristics of G23 decreased CO2 and CO, but increased CH4, NOx and PN emissions.

Comparison of Antifungal Activity, Plant Growth Promoting Activity, and Mineral-Solubilizing Ability of Bacillus sp. Isolated from Rhizosphere Soil and Root (근권 토양과 뿌리로부터 분리된 Bacillus sp.의 항진균 활성, 식물 생장 촉진 활성 및 미네랄 가용화능 비교)

  • Kim, Hee Sook;Oh, Ka-Yoon;Lee, Song Min;Kim, Ji-Youn;Lee, Kwang Hui;Lee, Sang-Hyeon;Jang, Jeong Su
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.4
    • /
    • pp.576-586
    • /
    • 2021
  • The purpose of this study was to evaluate the antifungal activity, plant-growth-promoting activity, and mineral solubilization ability of 10 species of phytopathogenic fungi to select a Bacillus sp. from rhizosphere soils and roots that can be used as a microbial agent. The antifungal activity for phytopathogenic fungi varied based on the Bacillus sp. Among the selected strains, DDP4, DDP16, DDP148, SN56, and SN95 exhibited antifungal activity for nine or more species of phytopathogenic fungi. Regarding nitrogen-fixation ability, all Bacillus sp. showed similar levels of activity, and siderophore production ability was relatively high in ANG42 and DDP427. The indole-3-acetic acid production abilities were in the range of 1.83-67.91 ㎍/ml, with variations in activity based on the Bacillus sp. One strain with a high activity was selected from each species, and their mineral solubilization abilities were examined. Most Bacillus sp. could solubilize phosphoric acid and calcium carbonate, and DDP148 and SN56 could solubilize silicon and zinc, respectively. These results suggested that Bacillus sp. can be considered potential multi-purpose microbial agents for plant growth promotion and disease prevention.

Evaluation of γ-Aminobutyric Acid (GABA) Production by Lactic Acid Bacteria Using 5-L Fermentor (Lactic Acid Bacteria (LAB)와 5-L 발효기를 이용한 γ-Aminobutyric Acid 생산기술 개발)

  • Kim, Na Yeon;Kim, Ji Min;Ra, Chae Hun
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.4
    • /
    • pp.559-565
    • /
    • 2021
  • This study aimed to optimize gamma-aminobutyric acid (GABA) production by employing five strains of lactic acid bacteria (LAB) that were capable of high cell growth and GABA production using a modified synthetic medium. GABA production in the strains was qualitatively confirmed via detection of colored spots using thin layer chromatography. Lactobacillus plantarum SGL058 and Lactococcus lactis SGL027 were selected as the suitable strains for GABA production. The conditions of the carbon and nitrogen sources were determined as 5 g/l glucose (L. plantarum SGL058), 5 g/l lactose (L. lactis SGL027), 10 g/l yeast extract (L. plantarum SGL058), and 20 g/l yeast extract (L. lactis SGL027) for GABA production. The cell growth, monitored by optical density at 600 nm, was 5.93 for L. plantarum SGL058. This value was higher than the 3.04 produced by L. lactis SGL027 at 36 h using a 5-L fermenter. The highest concentration of GABA produced was 546.7 ㎍/ml by L. plantarum SGL058 and 404.6 ㎍/ml by L. lactis SGL027, representing a GABA conversion efficiency of (%, w/w) of 4.0% and 3.4%, respectively. The fermentation profiles of L. plantarum SGL058 and L. lactis SGL027 provide a basis for the utilization of LAB in GABA production using a basal synthetic medium.