• Title/Summary/Keyword: Nitrogen

Search Result 15,913, Processing Time 0.041 seconds

Effects of Nitrogen Fertilizer on Growth of Indigofera pseudo-tinctoria in Kyongseodong Waste Landfill, Incheon

  • Kim, Kee-Dae;Lee, Sang-Mo;Lee, Eun-Ju
    • The Korean Journal of Ecology
    • /
    • v.26 no.2
    • /
    • pp.71-74
    • /
    • 2003
  • Effects of nitrogen addition on the growth of Indigofera pseudo-tinctoria (Leguminosae) in the waste landfill site was investigated. Nitrogen fertilization in the nitrogen poor soils of waste landfill may influence the growth of nitrogen fixing plants beneficially or detrimentally. When I. pseudo-tinctoria was fertilized with three different levels of nitrogen, the coverage of plants treated with 46 g N/$m^2$ and 460 g N/$m^2$ was significantly less than that of plants treated with 23 g N/$m^2$. The growth rates of plant height treated with 46 g N/$m^2$ and 460 g N/$m^2$ were significantly less than those of plants treated with 23 g N/$m^2$. The growth rates of plant diameter treated with 46 g N/$m^2$ and 460 g N/$m^2$ were significantly less than those of plants treated with 23 g N/$m^2$. Dry weights of whole plants in control sites were higher than those of all the others nitrogen treatment sites. Nodule numbers were higher in control plants than those of plants in all the other nitrogen treatment sites. It is suggested that nitrogen fertilizer addition over 23 g N/$m^2$ affect the growth of some nitrogen fixing plants, such as I. pseudo-tinctoria, negatively.

A Study on the Nitrogen Permeation Treatment of 17-4 PH Stainless Steel (17-4 PH Stainless 강의 질소침투 열처리)

  • Yoo, D.K.;Sung, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.19 no.2
    • /
    • pp.83-89
    • /
    • 2006
  • The surface phase changes, the hardness variations, the nitrogen contents and the corrosion resistances of 17-4 PH stainless steel have been investigated after nitrogen permeation(solution nitriding) at a temperature ranges from $1050^{\circ}C$ to $1150^{\circ}C$ The phases appeared at the nitrogen-permeated surface layer were shown to martensite plus austenite and austenite, depending on the variation of nitrogen and chromium contents. And the surface hardness was also depended on the phases appeared at the surface layer from 370 Hv to 220 Hv. The precipitates exhibited at the nitrogen-permeated surface layer were niobium nitride, niobium chromium nitride and carbo-nitride in the austenite and martensite matrices. The surface nitrogen contents were followed by the Cr contents of the surface layers, representing 0.55% at the temperatures of $1050^{\circ}C$ and $1150^{\circ}C$ respectively, and 0.96% at $1100^{\circ}C$ at the distances of $60{\mu}m$ from the outmost surface. From the comparison of the corrosion resistances between nitrogen-permeated and solution-annealed steels, nitrogen permeation remarkably improved the corrosion resistance in the solution of 1 N $H_2SO_4$ due to the increase of nitrogen content in the surface austenite phase.

Analysis of the microstructure of reactively sputtered Ta-N thin films (반응성 스퍼터링방법으로 증착된 Ta-N 박막의 미세구조 분석)

  • 민경훈;김기범
    • Journal of the Korean institute of surface engineering
    • /
    • v.27 no.5
    • /
    • pp.253-260
    • /
    • 1994
  • Ta-N films were reactively sputter deposited by dc magnetron sputtering from a Ta target with a various Ar-N, gas ratio. Electrical resistivity of pure Ta film was 150$\mu$$\Omega$cm and decreased initially with nitrogen addition, and then increased to a value of 220$\mu$$\Omega$-cm~260$\mu$$\Omega$-cm at 9%~23% nitrogen partial flow. Rutherford backscattering spectrometry(RBS) and Auger electron spectroscopy (AES) analysis show that nitrogen content in the film is increased with the nitrogen partial flow. The film contains 58at.% nitrogen at 36% nitrogen partial flow. Both the phase and the microstructure of the as-deposisted films were investigated by x-ray diffractometry(XRD) adn transmission electron microscopy (TEM) at various nitrogen content. The phase of pure Ta film is identified as $\beta$-Ta with a 200$\AA$~300$\AA$ grain size. The phase of Ta film is changed to bcc-Ta as small amount of nitrogen is added. Crystalline Ta2N film was deposited at 24at.% nitrogen content. Amorphous phase is formed over a range of nitrogen content from about 33at.% to 35at.% while crystalline fcc-TaN is observed to form at 39at.%~48at.% nitrogen content.

  • PDF

A Study on Measurement and Elimination Methods of Dissolved Nitrogen in Kerosene (케로신 내 용존질소 측정 및 제거 방법 연구)

  • Lee, Wongu;Kim, Seong Lyong;Ahn, Kyubok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.6
    • /
    • pp.142-148
    • /
    • 2018
  • To improve the performance of a launch vehicle, kerosene, a launch vehicle fuel, undergoes a densification process. Liquid nitrogen injection cooling is an effective densification method which has a simple system and is inexpensive. During the cooling process, however, nitrogen may dissolve in the kerosene, possibly resulting in changes to fuel properties. Therefore, it is essential to measure and eliminate the amount of dissolved nitrogen in the kerosene. In this study, the vacuum extraction principle is introduced to measure the content of dissolved nitrogen in the kerosene. In addition, the experimental results, which used a designed/manufactured nitrogen sampling device, are described. From the results, the validity of the nitrogen sampling device and the dissolved nitrogen measurement/elimination methods was demonstrated.

Optimizing the Performance of Three-Dimensional Nitrogen-Doped Graphene Supercapacitors by Regulating the Nitrogen Doping Concentration

  • Zhaoyang Han;Sang-Hee Son
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.4
    • /
    • pp.376-384
    • /
    • 2023
  • Nitrogen-doped graphene was synthesized by a hydrothermal method using graphene oxide (GO) as the raw material, urea as the reducing agent and nitrogen as the dopant. The morphology, structure, composition and electrochemical properties of the samples are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption-desorption analysis, electrical conductivity and electrochemical tests. The results show that urea can effectively reduce GO and achieve nitrogen doping under the hydrothermal conditions. By adjusting the mass ratio of raw materials to dopants, the graphene with different nitrogen doping contents can be obtained; the nitrogen content range is from 5.28~6.08% (atomic fraction percentage).When the ratio of dopant to urea is 1:30, the nitrogen doping content reaches a maximum of 6.08%.The supercapacitor performance test shows that the nitrogen content prepared by the ratio of 6.08% is the best at 0.1 A·g-1. The specific capacitance is 95.2 F·g-1.

Effect of Nonstarch Polysaccharide-Rich By-Product Diets on Nitrogen Excretion and Nitrogen Losses from Slurry of Growing-Finishing Pigs

  • Canh, T.T.;Verstegen, M.W.A.;Mui, N.B.;Aarnink, A.J.A.;Schrama, J.W.;Van't Klooster, C.E.;Duong, N.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.4
    • /
    • pp.573-578
    • /
    • 1999
  • An experiment was conducted to investigate the effect of diet for growing-finishing pigs with high level of non-starch polysaccharides (NSP) from by-products on nitrogen excretion and nitrogen losses from slurry during storage. Sixteen commercial crossbred barrows of about 68 kg BW were randomly allotted to one of four diets. The control diet was formulated using tapioca and rice as basal energy sources. In the other diets, tapioca was replaced by either coconut expellar, rice bran or beer by-product. The diets differed mainly in the amount and compostition of NSP. After a 12-day adaptation period, urine and faeces were collected separately in metabolism cages for 9 days. Urine and faeces from the first four days were used to analyse the nitrogen partitioning. Urine and faeces from the last 5 days were mixed as slurry. The slurry was sampled at the end of the collection period and again after 30 days storage, to analyse for nitrogen to calculate the losses. Increasing dietary NSP reduced urinary nitrogen and nitrogen losses from the slurry during storage. The pigs fed the diet based on beer by-product excreted the most nitrogen via faeces and the least nitrogen via urine. Nitrogen losses from slurry of pigs fed the beer by-product were from 34 to 65% lower than from the other three diets. It is concluded that including NSP-rich by-products in the diet of growing-finishing pigs reduces urinary nitrogen excretion and nitrogen losses from slurry during storage.

Effects of Persicaria thunbergii on Nitrogen Retention and Loss in Wetland Microcosms (습지 미소생태계에서 질소 보유와 제거에 대한 고마리 ( Persicaria thunbergii ) 의 효과)

  • Woo, Yeun-Kyung;Eun-Jin Park;Dowon Lee;Kye Song Lee
    • The Korean Journal of Ecology
    • /
    • v.19 no.2
    • /
    • pp.179-189
    • /
    • 1996
  • Growth and nitrogen retention of Persicaria thunbergii were investigated in the wetland microcosms which contained the plants growing on soil bed. Nitrogen solution was supplied to the microcosms with the same amount of $NH_4^{+}-N\; and\; NO_3^{-}-N$ at the rates of 0.00, 0.78, 1.57, 3.14g $N{\cdot}m^{-2}{\cdor}wk^{-1}$ from May 1 to August 31, 1995. The solution was detained for 5 days to react with soil and plant and then allowed to leach. The contents of NH_4^{+}-N\;and\; NO_3^{-}-N$ in the leachate, total Kjeldahl nitrogen, plant biomass, and soil characteristics were determined. Nitrogen retained by plant was estimated as the increment of TKN in plant biomass. The addition of 0.78 and 1.57g $N{\cdot}m^{-2}{\cdot}wk^{-1}$ resulted in significant increase of plant biomass. However, plant growth was inhibited when nitrogen was added at the rate of 3.14g $N{\cdot}m^{-2}{\cdot}wk^{-1}$. Overall, the plant biomass was positively correlated with the amount of nitrogen retained by plant and soil system. The amounts of $NO_3^{-}-N$ leached from the microcosms were 5~10 times higher than those of $NH_4^{+}-N$. While total nitrogen added ranged from 143.2 to 576.5g $N/m^2$, total leaching loss of inorganic nitrogen and nitrogen retained by plant was as little as 1.04~22.71g $N/m^2$, and 5.46~12.91g $N/m^2$, respectively. Then, the plant seemed to contribute to KDICical and microbial immobilization of nitrogen in the soil. Finally, it is suggested that a large portion of nitrogen added was lost into the air by denitrification and volatilizaton, and / or leached in organic forms.

  • PDF

Interactions of nitrogen supplying level and elevated CO2 on Growth and Photosynthesis of Picea koraiensis Nakai seedlings

  • Wang Y.J.;Mao Z.J.;Park K.W.
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 2004.11a
    • /
    • pp.139-143
    • /
    • 2004
  • To evaluate the biological and physiological response of Picea koraiensis Nakai to elevated $CO_2$ and nitrogen.3-year old seedlings were planted in an ambient and 700 ppm $CO_2$ at low (2mM $NH_4NO_3$) or high nitrogen (16mM $NH_4NO_3$) supplying treatments for 3 months. Photosynthetic parameters were measured monthly. Seedlings were harvested at monthly intervals and growth parameters of root system, stem and needle fractions were evaluated. The result showed that height of the seedlings grown at both of elevated $CO_2Xhigh$ nitrogen and elevated CO2×low nitrogen supplying treatments increased significantly more than that of at ambient CO2 treatments. Seedlings grown at elevated $CO_2Xhigh$ nitrogen produced more root biomass than at elevated $CO_2Xlow$ nitrogen and ambient $CO_2Xhigh$ nitrogen treatments. This result suggested that the root growth response of Picea koraiensis seedlings was greater in elevated $CO_2{\times}high$ nitrogen regime, which is very important for carbon sequestration in soil. $A_{max}$ of the seedlings grown at elevated $CO_2Xhigh$ nitrogen increased during the three months significantly, and $A_{max}$ of the seedlings grown at the other three treatments decreased significantly, suggesting that the interaction between elevated $CO_2$ and high nitrogen supplying stimulates the $A_{max}$ of Picea koraiensis. $A_{max}$ of the seedlings grown at elevated $CO_2Xlow$ nitrogen showed higher than other three treatments in the first month of the experiment, but decreased in succedent two months, suggesting that elevated $CO_2$ promotes the photosynthesis of the seedlings. However long term growth in elevated $CO_2Xlow$ nitrogen supplying condition resulted in an acclimatory decreased in leaf photosynthesis.

  • PDF

Effect of Planting Density and Nitrogen Level on Growth and Yield in Heavy Panicle Weight Type of Japonica Rice

  • Kim, Bo-Kyeong;Kim, Hyun-Ho;Ko, Jae-Kwon;Shin, Hyun-Tak
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.2
    • /
    • pp.106-111
    • /
    • 1999
  • To investigate the effects of planting density and nitrogen level on growth and yield potential of newly bred heavy panicle japonica rice with large grain (Iksan 435 and Iksan 438) or many spikelets per panicle(HR14022-21-8-4 and HR14022-21-8-6), four heavy panicle type rices and two many panicle type rices(Dongjinbyeo and Donganbyeo) as the checks were planted under standard planting density (30$\times$15 cm) and dense planting density (15$\times$15 cm) with two nitrogen levels of standard nitrogen level(110 kg h $a^{-1}$) and heavy nitrogen level(165 kg h $a^{-1}$). Effective tiller rate decreased in dense planting or heavy nitrogen, when compared to standard nitrogen and planting, while leaf area index and to dry weight increased in dense planting or heavy nitrogen. Tiller numbers and panicle numbers were more increased by dense planting than heavy nitrogen, whereas spikelet numbers were more increased by heavy nitrogen than dense planting. Ripened grain ratio was slightly lower only in dense planting. 1,000 grain weight in brown rice was not significantly different in dense planting or heavy nitrogen. Milled rice yield was highest in heavy nitrogen with standard planting for heavy panicle type rice, while yield for many panicle type rice was highest in heavy nitrogen with dense planting, suggesting that many panicle type rice possesses higher adapt-ability for dense planting than heavy panicle type rice. Path coefficient analysis revealed that top dry weight, spikelet number and grain weight were the greatest positive contributors to yield, whereas tiller number was negative to yield.d.

  • PDF

The Effect of Minaral Nitrogen Fertilization on Grassland Production under Various Cutting Frequencies I. Dry matter yield and estimation of optimum rate of mineral nitrogen fertilization in orchardgrass(Dactylis glomerata L) (예취빈도에 따른 무기태 질소시비가 초지의 생산성에 미치는 영향 I. 오차드 그라스의 건물수량과 적정 질소시비 수준의 추정)

  • 조익환;이주삼;안종호
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.14 no.2
    • /
    • pp.69-75
    • /
    • 1994
  • This experiment was canied out to study the effect of cutting frequencies (3, 4 and 5 cuts per year) and mineral nitrogen fertilization on dry matter yields, in order to estimate optimum level of fertilizing mineral nitrogen in orchardgrass(Dacry1is glomerafa L.). The results are as follows: 1. Dry matter yields were the highest in the 1st cut at 3 cutting frequency and in the 2nd cut at 4 and 5 cutting frequencies, and they shared 49.7, 37.0 and 37.0% of annual dry matter yield respectively. 2. When only phosphorus and potassium were applied, annual dry matter yields were between 9.4 and 11.5 tons per ha and the highest yield was observed at 3 cutting frequency. 3. Dry matter yield in relation to fertilization of mineral nitrogen was highly increased when more nitrogen was applied as 360 kg per ha compared to 240 kg per ha at 3 cutting frequency. At 4 and 5 cutting frequencies, increases in dry matter yield, to large extent, were showed at 120 and 150 kg of nitrogen per ha(30 kg Nlcutlha) compared to no application of nitrogen. The efficiencies of mineral nitrogen fertilization (kg DM/kg N) were 28.0, 22.7 and 20.6 kg dry matter yields per nitrogen(kg) respectively). 4. At 4 and 5 cutting frequencies, dry matter yields were reduced when 360 kg and 300 kg of mineral nitrogen per ha(90 kg and 60 kg Nlcutlha) were applied respectively. 5. Particularly at 4 and 5 cutting frequencies of this study, maximum marginal yields reached at 129.9 kg and 148.0 kg of fertilizing mineral nitrogen per ha, and economical borden of mineral nitrogen fertilization were between 222.4 and 250.0 kg and between 244.8 and 276.8 kg respectively. At the same cutting frequencies, the highest dry matter yields were obtained at 365.4 and 433.8 kg of fertilizing mineral nitrogen respectively.

  • PDF