• Title/Summary/Keyword: Nitrogen Utilization

Search Result 643, Processing Time 0.028 seconds

Effects of Cecectomy on Nitrogen Utilization and Nitrogen Excretion in Chickens Fed a Low Protein Diet Supplied with Urea

  • Son, J.H.;Karasawa, Y.;Nahm, K.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.3
    • /
    • pp.274-276
    • /
    • 1997
  • The effects of cecectomy on nitrogen utilization and nitrogen excretion were examined in single comb white leghorn (SCWL) cockerels fed a 5% protein diet supplied with urea. The cecectomy tended to increase nitrogen balance and nitrogen utilization and significantly decreased uric acid excretion (p < 0.01). Urea and ammonia excretion tended to be about 60% increased and decreased by cecectomy in SCWL cockerels, respectively, but blood ammonia, urea and uric acid concentrations were not affected. The results are in good agreement with those obtained previously in cecum-ligated chickens. It is concluded that the improvement of nitrogen utilization and decreases in urinary uric acid excretion in cecectomized chickens do not result from the modification of cecal fermentation.

A Comparative Study on the Intake, Digestibility, Nitrogen and Energy Utilization of Sward from Wildflower Pasture by Korean Native Goats (야생화 도입 초지에서 생산된 초류의 질소 및 에너지 이용성 비교)

  • 김득수;이인덕;이형석
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.21 no.4
    • /
    • pp.247-252
    • /
    • 2001
  • To access the feeding value of the herbage produced from the wildflower pasture, DM intake, digestibility and utilization of nitrogen and energy of herbages by Korean native goats were determined. The experimental herbage included two treatments: Conventional pasture(forage 6 species), wildflower pasture(turf grass 6 species + native wildflower 11 species + introduced wildflower 9 species). The voluntary DM intake of Korean native goats fed with herbages harvested from conventional pasture was higher than that from wildflower pasture(p<0.05). The digestibility of DM, NDF and ADF from conventional pasture was slightly higher than that of wildflower pasture, but no significant difference was observed(p>0.05). The utilization of nitrogen and energy by Korean native goats did not show any difference(pz0.05). In conclusion, the utilization of nitrogen and energy by Korean native goats did not show any significant difference. Thus, possibility of utilizing herbages from wildflower pasture for livestock was to be some extent expected. (Key words : Wildflower pasture, Digestibility, Nitrogen utilization, Energy utilization, Korean native goat)

  • PDF

Variation of Nitrogen Use Efficiency and Its Relationships with Growth Characteristics in Rice Cultivars

  • Lee, Seung-Hun;Lee, Ho-Jin;Chung, Ji-Hoon;Cho, Young-Chul;Lee, Jae-Hong;Kim, Hee-Dong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.2
    • /
    • pp.89-93
    • /
    • 2004
  • This experiment was conducted to investigate the variation of nitrogen use efficiency, nitrogen uptake efficiency, physiological utilization efficiency and their relationships with growth characteristics in the 28 Korean rice cultivars. Nitrogen use efficiency of 28 rice cultivars was 47.74, nitrogen uptake efficiency was 0.71, and physiological utilization efficiency was 68.76 in average. Nitrogen use efficiency of rice cultivars had low variation ranged from 44.09 to 51.91, but nitrogen uptake efficiency were relatively high variation from 0.51 to 0.90, and physiological utilization efficiency was from 51.71 to 94.26. The high efficient group in nitrogen uptake efficiency whose value was calculated above 0.80 included Daeanbyeo, Seojinbyeo, Ansungbyeo, Dongjinbyeo, and Hwaanbyeo, while the low efficient group with below 0.60 was Kwanganbyeo, Sampyeongbyeo, Soorabyeo, and Hwasungbyeo. Hwasungbyeo, Sampyeongbyeo, Soorabyeo for physiological utilization efficiency were more efficient cultivars, while Daeanbyeo, Seojinbyeo, Ansungbyeo were less efficient cultivars. Nitrogen uptake efficiency had positive correlation coefficients between dry matter weight of plant ($0.842^{**}$), leaf area index ($0.761^{**}$), and leaf nitrogen content ($0.599^{**}$), respectively. Therefore, the dry matter weight of rice plant and leaf area index was important characters to evaluate nitrogen uptake efficiency in rice cultivars. Also, more efficient cultivar in nitrogen uptake had higher chlorophyll meter value, which was appeared dark green color.

Effects of Dietary Cellulose Levels on Growth, Nitrogen Utilization, Retention Time of Diets in Digestive Tract and Caecal Microflora of Chickens

  • Cao, B.H.;Zhang, X.P.;Guo, Y.M.;Karasawa, Y.;Kumao, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.6
    • /
    • pp.863-866
    • /
    • 2003
  • This study was conducted to examine the effects of dietary cellulose levels on growth, nitrogen utilization, the retention time of diets in the digestive tract, and caecal microflora of 2-month-old Single Comb White Leghorn male chickens fed 3 purified diets that contained 0, 3.5% and 10% cellulose in equal amount of nutrients for 7 days. Body weight gain and nitrogen utilization were significantly higher (p<0.05), while total microflora counts in the caecal contents and retention time of the diet in the digestive tract were significantly lower (p<0.05) in the group fed 3.5% dietary cellulose compared with the group fed 10% dietary cellulose. Body weight gain, nitrogen utilization and retention time of the diet in the digestive tract decreased significantly while the total microflora count in the caecal contents increased significantly in the group fed 10% dietary cellulose compared to the group fed 0% dietary cellulose (p<0.05). Chickens fed 10% dietary cellulose had significantly increased counts of uric acid-degradative bacteria such as Peptococcaceae and Eubacterium, including Peptostreptococcus (p<0.05). The results suggest that cellulose in purified diets is an effective ingredient and the effects on growth, nitrogen utilization, caecal microflora counts and diet retention time in the digestive tract are dependent on the inclusion rate. Positive or negative effects of dietary cellulose are displayed by growth, nitrogen utilization, caecal microflora counts and retention time of the diet in the digestive tract. Positive effects were displayed when the inclusion rate is 3.5% and negative effects were displayed when that is greater than 3.5% of the diet, and the phenomenon is without reference to the age of the chickens.

EFFECT OF ADDITIONS OF POTASSIUM AND NITROGEN INTO PRESS CAKE ON MAGNESIUM UTILIZATION OF GOATS WITH RELATION TO WATER INTAKE

  • Kim, S.A.;Ohshima, M.;Kayama, R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.1 no.1
    • /
    • pp.33-41
    • /
    • 1988
  • In a study about minerals cycling in grassland agro-ecosystem, investigation on relations among two minerals, potassium(K) and magnesium(Mg), and nitrogen(N) was performed. Four kinds of diets different in K and N levels were fed to four goats with a Latin-square method and $2{\times}2$ factorial design. As the basal diet, press cake silage prepared from Italian ryegrass was used because of its uniformity and comparatively low mineral concentrations. Supplementation of K and N were made using potassium bicarbonate and urea. In the experiment, it was clearly shown that high K concentration in the forage crops is the main reason of the low utilization of Mg in ruminant animals. However, high nitrogen intake resulted in the increase of magnesium retention, urinary potassium excretion, water intake and volume of urine and in the decreases of potassium intake minus urinary potassium excretion. The results of high nitrogen intake seemed to be produced in the following order;increase of urine, increase of water intake, increase of urinary potassium excretion, and decrease of intake minus urinary potassium excretion. The amount of potassium intake minus urinary potassium excretion had significantly close relationships with magnesium utilization and serum magnesium concentration. As a conclusion, higher nitrogen intake by ruminants seemed to be preferable for magnesium utilization through increased water intake and urinary potassium excretion, if the sufficient drinking water could be supplied to ruminants.

Change in Nitrogen Fractions and Ruminal Nitrogen Degradability of Orchardgrass and Alfalfa during the Ensiling Process and the Subsequent Effects on Nitrogen Utilization by Sheep

  • Nguyen, H.V.;Kawai, M.;Takahashi, J.;Matsuoka, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.11
    • /
    • pp.1524-1528
    • /
    • 2004
  • In order to determine the extent of change in nitrogen fractions and in vitro ruminal degradability of forage protein during ensilage and the influence on nitrogen utilization by sheep, orchardgrass (Dactylis glomerata L.) and alfalfa (Medicago sativa L.) were ensiled in separate 120 L silos for 5, 21 and 56 days. With respect to nitrogen fractions, fraction 1 (buffer solution soluble nitrogen), fraction 2 (buffer solution insoluble nitrogen-neutral detergent insoluble nitrogen), fraction 3 (neutral detergent insoluble nitrogen-acid detergent insoluble nitrogen), and fraction 4 (acid detergent insoluble nitrogen) were determined. Fractions 1 and 2 accounted for more than 80% of total nitrogen in orchardgrass and 90% of that in alfalfa. The proportion of fraction 1 in orchardgrass increased from 33.0% at day 0 to 52.0% after day 56 of ensiling. In the case of alfalfa silage it was 41.7% and 62.9%, respectively. Seventy percent of this increase occurred within the first 5 days of ensiling. A similar change of in vitro ruminal degradability of total nitrogen was also observed in both forages. Nitrogen retention in sheep tended to decrease as the length of ensiling increased, with a significantly positive correlation between urinary nitrogen and fraction 1, and in vitro ruminal degradability of total nitrogen.

Effect of feeding garlic leaves on rumen fermentation, methane emission, plasma glucose kinetics, and nitrogen utilization in sheep

  • Panthee, Arvinda;Matsuno, Ayana;Al-Mamun, Mohammad;Sano, Hiroaki
    • Journal of Animal Science and Technology
    • /
    • v.59 no.6
    • /
    • pp.14.1-14.9
    • /
    • 2017
  • Background: Garlic and its constituents are reported to have been effective in reducing methane emission and also influence glucose metabolism in body; however, studies in ruminants using garlic leaves are scarce. Garlic leaves contain similar compounds as garlic bulbs, but are discarded in field after garlic bulb harvest. We speculate that feeding garlic leaves might show similar effect as garlic constituents in sheep and could be potential animal feed supplement. Thus, we examined the effect of freeze dried garlic leaves (FDGL) on rumen fermentation, methane emission, plasma glucose kinetics and nitrogen utilization in sheep. Methods: Six sheep were fed Control diet (mixed hay and concentrate (60:40)) or FDGL diet (Control diet supplemented with FDGL at 2.5 g/kg $BW^{0.75}$ of sheep) using a crossover design. Methane gas emission was measured using open-circuit respiratory chamber. Plasma glucose turnover rate was measured using isotope dilution technique of [$U-^{13}C$]glucose. Rumen fluid, feces and urine were collected to measure rumen fermentation characteristics and nitrogen utilization. Result: No significant difference in rumen fermentation parameters was noticed except for rumen ammonia tended to be higher (0.05 < P < 0.1) in FDGL diet. Methane emission per kg dry matter ingested and methane emission per kg dry matter digested were lower (P < 0.05) in FDGL diet. Plasma glucose concentration was similar between diets and plasma glucose turnover rate tended to be higher in FDGL diet (0.05 < P < 0.1). Nitrogen retention was higher (P < 0.05) and microbial nitrogen supply tended to be higher (0.05 < P < 0.1) in FDGL diet. Conclusion: FDGL diet did not impair rumen fermentation, improved nitrogen retention; while absence of significant results in reduction of methane emission, glucose turnover rate and microbial nitrogen supply, further studies at higher dose would be necessary to conclude the merit of FDGL as supplement in ruminant feedstuff.

Change in Nitrogen Fractions and Ruminal Nitrogen Degradability of Orchardgrass Ensiled at Various Moisture Contents and the Subsequent Effects on Nitrogen Utilization by Sheep

  • Nguyen, H.V.;Kawai, M.;Takahashi, J.;Matsuoka, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.9
    • /
    • pp.1267-1272
    • /
    • 2005
  • The effect of various moisture contents of fresh forage on the change in nitrogen (N) fractions, in vitro ruminal N degradability, and the subsequent N utilization of silage in sheep were evaluated. Orchardgrass (Dactylis glomerata L.) with high (HM, 76%), medium (MM, 65%) and low (LM, 40%) moisture contents were ensiled into silos of 120 L capacity for 120 days. A nitrogen balance trial was conducted using a 4${\times}$4 Latin square design consisting of four dietary treatments (i.e. fresh forage, HM, MM and LM silages) and four wethers. With respect to N fractions, fraction 1 (buffer solution soluble N), fraction 2 (buffer solution insoluble N-neutral detergent insoluble N), fraction 3 (neutral detergent insoluble N-acid detergent insoluble N), and fraction 4 (acid detergent insoluble N) were determined. The proportion of fraction 1 in silages tended to decrease, while the in vitro ruminal degradability of insoluble N increased (p<0.05) with lower moisture contents at ensiling. Consequently, nitrogen utilization in sheep tended to improve as the moisture content of ensiled grass was decreased, with a negative correlation (p<0.01) between urinary N and the in vitro ruminal degradability of insoluble N. The averaged N retentions for HM, MM, and LM silage treatments were 59, 73 and 79% of that for fresh forage, respectively.

Ruminal ciliates as modulators of the rumen microbiome

  • Tansol Park
    • Animal Bioscience
    • /
    • v.37 no.2_spc
    • /
    • pp.385-395
    • /
    • 2024
  • Ruminal ciliates are a fundamental constituent within the rumen microbiome of ruminant animals. The complex interactions between ruminal ciliates and other microbial guilds within the rumen ecosystems are of paramount importance for facilitating the digestion and fermentation processes of ingested feed components. This review underscores the significance of ruminal ciliates by exploring their impact on key factors, such as methane production, nitrogen utilization efficiency, feed efficiency, and other animal performance measurements. Various methods are employed in the study of ruminal ciliates including culture techniques and molecular approaches. This review highlights the pressing need for further investigations to discern the distinct roles of various ciliate species, particularly relating to methane mitigation and the enhancement of nitrogen utilization efficiency. The promotion of establishing robust reference databases tailored specifically to ruminal ciliates is encouraged, alongside the utilization of genomics and transcriptomics that can highlight their functional contributions to the rumen microbiome. Collectively, the progressive advancement in knowledge concerning ruminal ciliates and their inherent biological significance will be helpful in the pursuit of optimizing rumen functionality and refining animal production outcomes.