• Title/Summary/Keyword: Noetherian ring

Search Result 162, Processing Time 0.021 seconds

THE ANNIHILATOR IDEAL GRAPH OF A COMMUTATIVE RING

  • Alibemani, Abolfazl;Bakhtyiari, Moharram;Nikandish, Reza;Nikmehr, Mohammad Javad
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.417-429
    • /
    • 2015
  • Let R be a commutative ring with unity. The annihilator ideal graph of R, denoted by ${\Gamma}_{Ann}(R)$, is a graph whose vertices are all non-trivial ideals of R and two distinct vertices I and J are adjacent if and only if $I{\cap}Ann(J){\neq}\{0\}$ or $J{\cap}Ann(I){\neq}\{0\}$. In this paper, we study some connections between the graph-theoretic properties of this graph and some algebraic properties of rings. We characterize all rings whose annihilator ideal graphs are totally disconnected. Also, we study diameter, girth, clique number and chromatic number of this graph. Moreover, we study some relations between annihilator ideal graph and zero-divisor graph associated with R. Among other results, it is proved that for a Noetherian ring R if ${\Gamma}_{Ann}(R)$ is triangle free, then R is Gorenstein.

THE ANNIHILATING-IDEAL GRAPH OF A RING

  • ALINIAEIFARD, FARID;BEHBOODI, MAHMOOD;LI, YUANLIN
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.6
    • /
    • pp.1323-1336
    • /
    • 2015
  • Let S be a semigroup with 0 and R be a ring with 1. We extend the definition of the zero-divisor graphs of commutative semigroups to not necessarily commutative semigroups. We define an annihilating-ideal graph of a ring as a special type of zero-divisor graph of a semigroup. We introduce two ways to define the zero-divisor graphs of semigroups. The first definition gives a directed graph ${\Gamma}$(S), and the other definition yields an undirected graph ${\overline{\Gamma}}$(S). It is shown that ${\Gamma}$(S) is not necessarily connected, but ${\overline{\Gamma}}$(S) is always connected and diam$({\overline{\Gamma}}(S)){\leq}3$. For a ring R define a directed graph ${\mathbb{APOG}}(R)$ to be equal to ${\Gamma}({\mathbb{IPO}}(R))$, where ${\mathbb{IPO}}(R)$ is a semigroup consisting of all products of two one-sided ideals of R, and define an undirected graph ${\overline{\mathbb{APOG}}}(R)$ to be equal to ${\overline{\Gamma}}({\mathbb{IPO}}(R))$. We show that R is an Artinian (resp., Noetherian) ring if and only if ${\mathbb{APOG}}(R)$ has DCC (resp., ACC) on some special subset of its vertices. Also, it is shown that ${\overline{\mathbb{APOG}}}(R)$ is a complete graph if and only if either $(D(R))^2=0,R$ is a direct product of two division rings, or R is a local ring with maximal ideal m such that ${\mathbb{IPO}}(R)=\{0,m,m^2,R\}$. Finally, we investigate the diameter and the girth of square matrix rings over commutative rings $M_{n{\times}n}(R)$ where $n{\geq} 2$.

ON 𝑺-CLOSED SUBMODULES

  • Durgun, Yilmaz;Ozdemir, Salahattin
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1281-1299
    • /
    • 2017
  • A submodule N of a module M is called ${\mathcal{S}}$-closed (in M) if M/N is nonsingular. It is well-known that the class Closed of short exact sequences determined by closed submodules is a proper class in the sense of Buchsbaum. However, the class $\mathcal{S}-Closed$ of short exact sequences determined by $\mathcal{S}$-closed submodules need not be a proper class. In the first part of the paper, we describe the smallest proper class ${\langle}\mathcal{S-Closed}{\rangle}$ containing $\mathcal{S-Closed}$ in terms of $\mathcal{S}$-closed submodules. We show that this class coincides with the proper classes projectively generated by Goldie torsion modules and coprojectively generated by nonsingular modules. Moreover, for a right nonsingular ring R, it coincides with the proper class generated by neat submodules if and only if R is a right SI-ring. In abelian groups, the elements of this class are exactly torsionsplitting. In the second part, coprojective modules of this class which we call ec-flat modules are also investigated. We prove that injective modules are ec-flat if and only if each injective hull of a Goldie torsion module is projective if and only if every Goldie torsion module embeds in a projective module. For a left Noetherian right nonsingular ring R of which the identity element is a sum of orthogonal primitive idempotents, we prove that the class ${\langle}\mathcal{S-Closed}{\rangle}$ coincides with the class of pure-exact sequences of modules if and only if R is a two-sided hereditary, two-sided $\mathcal{CS}$-ring and every singular right module is a direct sum of finitely presented modules.

A GENERALIZATION OF THE PRIME RADICAL OF IDEALS IN COMMUTATIVE RINGS

  • Harehdashti, Javad Bagheri;Moghimi, Hosein Fazaeli
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.543-552
    • /
    • 2017
  • Let R be a commutative ring with identity, and ${\phi}:{\mathfrak{I}}(R){\rightarrow}{\mathfrak{I}}(R){\cup}\{{\varnothing}\}$ be a function where ${\mathfrak{I}}(R)$ is the set of all ideals of R. Following [2], a proper ideal P of R is called a ${\phi}$-prime ideal if $x,y{\in}R$ with $xy{\in}P-{\phi}(P)$ implies $x{\in}P$ or $y{\in}P$. For an ideal I of R, we define the ${\phi}$-radical ${\sqrt[{\phi}]{I}}$ to be the intersection of all ${\phi}$-prime ideals of R containing I, and show that this notion inherits most of the essential properties of the usual notion of radical of an ideal. We also investigate when the set of all ${\phi}$-prime ideals of R, denoted $Spec_{\phi}(R)$, has a Zariski topology analogous to that of the prime spectrum Spec(R), and show that this topological space is Noetherian if and only if ${\phi}$-radical ideals of R satisfy the ascending chain condition.

AN INDEPENDENT RESULT FOR ATTACHED PRIMES OF CERTAIN TOR-MODULES

  • Khanh, Pham Huu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.531-540
    • /
    • 2015
  • Let (R, m) be a Noetherian local ring, I an ideal of R, and A an Artinian R-module. Let $k{\geq}0$ be an integer and $r=Width_{>k}(I,A)$ the supremum of length of A-cosequence in dimension > k in I defined by Nhan-Hoang [8]. It is shown that for all $t{\leq}r$ the sets $$(\bigcup_{i=0}^{t}Att_R(Tor_i^R(R/I^n,A)))_{{\geq}k}\;and\\(\bigcup_{i=0}^{t}Att_R(Tor_i^R(R/(a_1^{n_1},{\cdots},a_l^{n_l}),A)))_{{\geq}k}$$ are independent of the choice of $n,n_1,{\cdots},n_l$ for any system of generators ($a_1,{\cdots},a_l$) of I.

FINITENESS PROPERTIES OF EXTENSION FUNCTORS OF COFINITE MODULES

  • Irani, Yavar;Bahmanpour, Kamal
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.2
    • /
    • pp.649-657
    • /
    • 2013
  • Let R be a commutative Noetherian ring, I an ideal of R and T be a non-zero I-cofinite R-module with dim(T) ${\leq}$ 1. In this paper, for any finitely generated R-module N with support in V(I), we show that the R-modules $Ext^i_R$(T,N) are finitely generated for all integers $i{\geq}0$. This immediately implies that if I has dimension one (i.e., dim R/I = 1), then $Ext^i_R$($H^j_I$(M), N) is finitely generated for all integers $i$, $j{\geq}0$, and all finitely generated R-modules M and N, with Supp(N) ${\subseteq}$ V(I).

PURE INJECTIVE REPRESENTATIONS OF QUIVERS

  • Hosseini, Esmaeil
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.2
    • /
    • pp.389-398
    • /
    • 2013
  • Let R be a ring and $\mathcal{Q}$ be a quiver. In this paper we give another definition of purity in the category of quiver representations. Under such definition we prove that the class of all pure injective representations of $\mathcal{Q}$ by R-modules is preenveloping. In case $\mathcal{Q}$ is a left rooted semi-co-barren quiver and R is left Noetherian, we show that every cotorsion flat representation of $\mathcal{Q}$ is pure injective. If, furthermore, R is $n$-perfect and $\mathcal{F}$ is a flat representation $\mathcal{Q}$, then the pure injective dimension of $\mathcal{F}$ is at most $n$.

RELATIVE PROJECTIVITY AND RELATED RESULTS

  • Toroghy, H.Ansari
    • Bulletin of the Korean Mathematical Society
    • /
    • v.41 no.3
    • /
    • pp.419-426
    • /
    • 2004
  • Let R be a commutative Noetherian ring and let M be an Artinian R-module. Let M${\subseteq}$M′ be submodules of M. Suppose F is an R-module which is projective relative to M. Then it is shown that $Att_{R}$($Hom_{A}$ (F,M′) :$Hom_{A}$(F,M) $In^n$), n ${\in}$N and $Att_{R}$($Hom_{A}$(F,M′) :$Hom_{A}$(F,M) In$^n$ $Hom_{A}$(F,M") :$Hom_{A}$(F,M) $In^n$),n ${\in}$ N are ultimately constant.

ON THE LOCAL COHOMOLOGY OF MINIMAX MODULES

  • Mafi, Amir
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.6
    • /
    • pp.1125-1128
    • /
    • 2011
  • Let R be a commutative Noetherian ring, a an ideal of R, and M a minimax R-module. We prove that the local cohomology modules $H^j_a(M)$ are a-cominimax; that is, $Ext^i_R$(R/a, $H^j_a(M)$) is minimax for all i and j in the following cases: (a) dim R/a = 1; (b) cd(a) = 1, where cd is the cohomological dimension of a in R; (c) dim $R{\leq}2$. In these cases we also prove that the Bass numbers and the Betti numbers of $H^j_a(M)$ are finite.

ON THE κ-REGULAR SEQUENCES AND THE GENERALIZATION OF F-MODULES

  • Ahmadi-Amoli, Khadijeh;Sanaei, Navid
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.5
    • /
    • pp.1083-1096
    • /
    • 2012
  • For a given ideal I of a Noetherian ring R and an arbitrary integer ${\kappa}{\geq}-1$, we apply the concept of ${\kappa}$-regular sequences and the notion of ${\kappa}$-depth to give some results on modules called ${\kappa}$-Cohen Macaulay modules, which in local case, is exactly the ${\kappa}$-modules (as a generalization of f-modules). Meanwhile, we give an expression of local cohomology with respect to any ${\kappa}$-regular sequence in I, in a particular case. We prove that the dimension of homology modules of the Koszul complex with respect to any ${\kappa}$-regular sequence is at most ${\kappa}$. Therefore homology modules of the Koszul complex with respect to any filter regular sequence has finite length.