• Title/Summary/Keyword: Non humidity

Search Result 365, Processing Time 0.031 seconds

Observation of Moisture Content in Wood at Non-Steady State

  • Hwang, Sung-Wook;Lee, Won-Hee
    • Journal of the Korea Furniture Society
    • /
    • v.20 no.6
    • /
    • pp.599-604
    • /
    • 2009
  • For the search of unified law of moisture movement in wood, moisture distribution of Korean red pine at non-steady state was investigated. We assume that the equilibrium moisture content (EMC) in wood depends on only temperature and relative humidity, it can be control in temperature and humidity chamber. If temperature is constant and humidity or vapor pressure is changed with sin curve shape at adequate cycles, EMC in chamber can be changed as well with sin-curve shape. The setup condition of a non-steady state in humidity control chambers is a constant temperature at $20^{\circ}C$ and 15+10 sin ${\omega}t$ percent EMC. It can be found that the distribution of moisture in the specimen with varying relative humidity are illustrated various types. Moisture in wood is complicated and vibrates with the moisture sorption process. Considering a unified law of moisture movement in wood, it is considered that the most important fact is to search the method of precise diffusion & transfer coefficients.

  • PDF

Electrostatic Electrification Relaxation Properties of Polyester Rayon Non-woven Fabric due to Weight Variation (중량변화에 의한 폴리에스터 레이온 부직포의 정전기 대전 완화특성)

  • Lee, Sung-Ill;Park, Yong-Soon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.12
    • /
    • pp.977-981
    • /
    • 2011
  • Non-wovens polyester rayon samples were manufactured, and the electrification properties of electrostatics were measured for three different samples (15 g/$m^2$, 25 g/$m^2$, and 40 g/$m^2$) with the environmental settings of temperature (20~40$^{\circ}C$) and humidity (40~90%). The conclusions are as follows. Heavy sample generated more static electricity when the temperature was constant. The static electricity decreased slowly when the humidity is less than 70%, while it sharply decreased over 70% humidity condition. For non-woven polyester rayon, static charge decreased as temperature and humidity increased. As the weight increased, less time were taken for the electrification voltage to drop to the half.

Development of Humidity Sensor Based on Ceramic/Metal Halide Composite Films for Non-Contact Biological Signal Monitoring Applications (비접촉 생체신호 모니터링 응용을 위한 세라믹/메탈 할라이드 복합막 기반 습도센서 개발)

  • Park, Tae-Ung;Kim, Ik-Soo;Kim, Min-Ji;Park, Chulhwan;Seo, Eui-kyoung;Oh, Jong-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.4
    • /
    • pp.412-417
    • /
    • 2022
  • Capacitive-type humidity sensors with a high sensitivity and fast response/recovery times have attracted a great attention in non-contact respiration biological signal monitoring applications. However, complicated fabrication processes involving high-temperature heat treatment for the hygroscopic film is essential in the conventional ceramic-based humidity sensors. In this study, a non-toxic ceramic/metal halide (BaTiO3(BT)/NaCl) humidity sensor was prepared at room temperature using a solvent-free aerosol deposition process (AD) without any additional process. Currently prepared BT/NaCl humidity sensor shows an excellent sensitivity (245 pF/RH%) and superior response/recovery times (3s/4s) due to the NaCl ionization effect resulting in an immense interfacial polarization. Furthermore, the non-contact respiration signal variation using the BT/NaCl sensor was determined to be over 700% by maintaining the distance of 20 cm between the individual and the sensor. Through the AD-fabricated sensor in this study, we expect to develop a non-contact biological signal monitoring system that can be applied to various fields such as respiratory disease detection and management, infant respiratory signal observation, and touchless skin moisture sensing button.

Investigation of Standard Error Range of Non-Contact Thermometer by Environment (외부 환경 변화에 의한 비 접촉 체온계의 오차 범위 측정)

  • Kim, Jeongeun;Park, Sangwoong;Choi, Heakyung
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.8 no.4
    • /
    • pp.307-321
    • /
    • 2020
  • Purpose : A person infected by SARS-CoV2 may present various symptoms such as fever, pain in lower respiratory tract, and pneumonia. Measuring body temperature is a simple method to screen patients. However, changes in the surrounding environment may cause errors in infrared measurement. Hence, a non-contact thermometer controls this error by setting a correction value, but it is difficult to correct it for all environments. Therefore, we investigate device error values according to changes in the surrounding environment (temperature and humidity) and propose guidelines for reliable patient detection. Methods : For this study, the temperature was measured using three types of non-contact thermometers. For accurate temperature measurement, we used a water bath kept at a constant temperature. During temperature measurement, we ensured that the temperature and humidity were maintained using a thermo-hygrometer. The conditions of the surrounding environment were changed by an air conditioner, humidifier, warmer, and dehumidifier. Results : The temperature of the water bath was measured using a non-contact thermometer kept at various distances ranging from 3~10 cm. The value measured by the non-contact thermometer was then verified using a mercury thermometer, and the difference between the measured temperatures was compared. It was observed that at normal surrounding temperature (24 ℃), there was no difference between the values when the non-contact thermometer was kept at 3 cm. However, as the distance of the non-contact thermometer was increased from the water bath, the recorded temperature was significantly different compared with that of mercury thermometer. Moreover, temperature measurements were conducted at different surrounding temperatures and the results obtained significantly varied from when the thermometer was kept at 3 cm. Additionally, it was observed that the effect on temperature decreases with an increase in humidity Conclusion : In conclusion, non-contact thermometers are lower in lower temperature and dry weather in winter.

Cooling Cycle for Energy Saving (에너지 절약용 냉방사이클)

  • Lee, Hung Joo;Kim, Yong Ku
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.1 no.2
    • /
    • pp.116-127
    • /
    • 1989
  • Research on reheating cooling cycle and its practical application have been made to prevent unequalized distribution of temperature and humidity of room due to lack of supply air volume and dewdrops on supply diffusers to be taken place as a result of lower temperature of supply air than that of dew point of room air in cooling cycle of constant air volume, single duct, single zone and draw-through fan type. In view of the fact that human body is insensitive to humidity, it is possible not only to construct the complete non-reheating cooling cycle by increasing the humidity point allowable with the deduction of occupant's sense of pleasantness minimizing, but also to get cooling cycle decreasing the reheating quantity if the humidity exceeds the point allowable. In addition, it is possible to save maximum 8% in electric energy for cooling in cooling system by constructing non-reheating cooling cycle instead of reheating cooling cycle and by increasing the relative humidity of room from 50% to 65% in case efficiency and air pressure of cooling system are low. It is also possible to get an optimum cooling cycle by determining the room humidity in consideration of pleasantness of occupants and conservation rate of electric energy if the cooling capacity, efficiency and total pressure of cooling equipment are fixed.

  • PDF

Application of a General Gas Electrode Model to Ni-YSZ Symmetric Cells: Humidity and Current Collector Effects

  • Shin, Eui-Chol;Ahn, Pyung-An;Seo, Hyun-Ho;Lee, Jong-Sook
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.5
    • /
    • pp.511-520
    • /
    • 2016
  • Electrolyte-supported symmetric Ni-YSZ cermet electrodes of ca. $23{\mu}m$ were prepared by screenprinting and the impedance was measured as a function of humidity from 2% to 90% balanced in $H_2$ at a total flow rate of 50 sccm. The Ni felt current collector of 1 mm thickness exhibited a Gerischer-like gas concentration impedance in the low frequency range, which was similarly observed in the cermet-supported solid oxide cells, while the Pt paste collector exhibited only electrochemical polarization. The electrochemical polarization of both samples was modeled by a non-ideal diffusion-reaction transmission line model including CPEs with ${\alpha}$= 0.5. In the case of the Pt paste collector, all the Bisquert parameters exhibited humidity dependence to the -1/2 power, supporting a non-faradaic chemical reaction mechanism at three phase boundaries. Consequently, the surface diffusivity and reaction rate increased linearly with humidity. Less pronounced humidity dependence and somewhat lower utilization length with an Ni felt collector can be attributed to the diffusion-limited gas flow through the collector.

A study on the hydrogen generation's characteristics via non-thermal plasma and carrier gas (비열플라즈마에 의한 수소발생에 미치는 캐리어가스의 영향)

  • Kim, Jong-Seog;Park, Jae-Yoon;Jung, Jang-Gun;Kim, Tae-Yong;Koh, Hee-Seog;Lee, Hyun-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.215-219
    • /
    • 2004
  • This paper is investigated about the effect of carrier gas and humidity for generating hydrogen gas. In the experimental result of generating hydrogen gas by non-thermal plasma reactor, the rate of generating hydrogen gas is different with what kind of carrier gas is. We used two types of carrier gas, such as $N_2$ and He. $N_2$ as carrier gas is more efficient to generate hydrogen gas than He because $N_2$ is reacted with $O_2$, which is made from water dissociation. In comparison with no humidity and humidity 45[%], the generation of hydrogen gas is decreased with increasing the humidity. That is the result that the energy for water dissociation is reduced on water surface because a part of plasma energy is absorbed at the small particle produced from humidifier.

  • PDF

A Humidity Sensor Using an Electrochemically Prepared Poly(1,5-Diaminonaphthalene)Film

  • Park, Deong-Su;Shim, Yoon-Bo
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.241-248
    • /
    • 2003
  • An electrochemical humidity sensor was fabricated with poly(1,5-diaminonaphthalene) film coated on a gap of two splitted gold electrodes, which were made by vacuum deposition. Response currents according to humidity were measured by the potential sweep method and chronoamperometry. The stability of the polymer film was improved by double step chronoamperometry using the applied voltage of ${\pm}0.5$ Vdc. The response time determined by the pulse technique was about ${\sim}50$ msec and the relative standard deviation of current response was within ${\pm}5.0%$. The response current of the film was intrinsically humidity dependent. The film exhibited a non-linear but reproducible response in ordinary range of relative humidity. The linear equations were $I(nA)=0.28{\times}%RH-1.01$ between 10 to 70 %RH and $I(nA)=6.05{\times}%RH-403.21$ between 70 to 90 %RH.

Photocatalytic Destruction of Chlorinated and Aromatic Hydrocarbons for Low-Level Indoor Air Cleaning (저농도 실내공기 정화를 위한 염소화 및 방향족 탄화수소의 광촉매 분해)

  • Jo, Wan Geun;Gwon, Gi Dong;Choe, Sang Jun;Song, Dong Ik
    • Journal of Environmental Science International
    • /
    • v.13 no.9
    • /
    • pp.767-777
    • /
    • 2004
  • This study evaluated the technical feasibility of the application of $TiO_2$ photocatalysis for the removal of volatile hydrocarbons(VHC) at low ppb concentrations commonly associated with non-occupational indoor air quality issues. A series of experiments was conducted to evaluate five parameters (relative humidity (RH), hydraulic diameter (HD), feeding type (FT) of VHC, photocatalytic oxidation (PCO) reactor material (RM), and inlet port size (IPS) of PCO reactor) for the PCO destruction efficiencies of the selected target VHC. None of the target VHC presented significant dependence on the RH, which are inconsistent with a certain previous study that reported that under conditions of low humidity and a ppm toluene inlet level, there was a drop in the PCO efficiency with decreasing humidity. However, it is noted that the four parameters (HD, RM, FT and IPS) should be considered for better VHC removal efficiencies for the application of $TiO_2$ photocatalytic technology for cleansing non-occupational indoor air. The PCO destruction of VHC at concentrations associated with non-occupational indoor air quality issues can be up to nearly 100%. The amount of CO generated during PCO were a negligible addition to the indoor CO levels. These abilities can make the PCO reactor an important tool in the effort to improve non-occupational indoor air quality.

An Experimental Study on Non-hygroscopic Propertiy of PAG and POE Oils for a $CO_2$ Refrigeration System ($CO_2$ 냉동시스템용 PAG오일과 POE오일의 항흡습성에 관한 실험적 연구)

  • Lee, Sung-Kwang;Kang, Byung-Ha
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.6
    • /
    • pp.388-393
    • /
    • 2008
  • This study has been conducted to select the suitable refrigeration oil for a $CO_2$ refrigeration system. Non-hygroscopic property of refrigeration oils is one of the most important properties for refrigeration oils. PAG and POE oils are considered as test oils in this study. Transient variation of water content of PAG and POE oils was measured for 3 different vessels in the environmental conditions, such as in the range of temperature $25^{\circ}C$ to $40^{\circ}C$ and relative humidity 40% to 85%. The results obtained that water content of both POE and PAG is increased with an increase in the contact area with ambient for 3 different vessels. It is also found that water content of both POE and PAG is increased as the ambient temperature and relative humidity is increased. Non-hygroscopic property of POE oil is found to be much superior than that of PAG oil.