• Title/Summary/Keyword: Non-Cement

Search Result 514, Processing Time 0.027 seconds

Fluidization characteristics of Non-sirtered cement mortar using blast furnace slag and fly ash (고로슬래그와 플라이애시를 이용한 비소성 시멘트 모르타르의 유동화 특성)

  • Byun, Hui-Jae;Na, Hyeong-Won;Hyung, Won-Gil
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.186-187
    • /
    • 2022
  • The purpose of this study was to give fluidizing properties to non-sirtered cement made using by-products that can replace Portland cement by using a fluidizing agent. Blast furnace slag, C-type fly ash, and F-type fly ash were used for non-sirtered cement, and sand was used for aggregate. The amount of fluidizing agent used was fixed at 1%, and the water-cement ratio (W/C) was different by setting the binder blending ratio of the non-sintered cement differently, and the fluidity test and flow were compared. As a result of the experiment, when the flow standard was 170mm when the fluidizing agent was used, the fluidizing properties were shown at an average water-cement ratio (W/C) of 36%. Through this study, it was confirmed that the fluidizing properties appeared when the fluidizing agent was used in non-sintered cement.

  • PDF

Basic Properties of Non-Clinker Cement Using Industrial By-Products (산업부산물을 이용한 무 클링커 시멘트의 기초적 특성)

  • 문경주;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.11-16
    • /
    • 2002
  • The production of Portland cement involves maximum use of resources and energy, which leads to destruction of tile ecological environment, raising in serious environmental issues such as acid rain and the greenhouse effect. In order to combat the arising problems associated with Portland cement, it thus is necessary that a non-clinker cement should be developed. In this study, non-clinker cement is produced by blending granulate blast furnace slag with phosphogypsum as main materials, and small amounts of hydrate lime or waste lime as activators. This paper aims to investigate compressive strength according to various condition of mixing ratio, blame, W/C ratio and curing temperature. Compressive strength of non-clinker cement increases continuously according to increase in curing age and blain. Although the compressive strength is fairly comparable to that of OPC in the early curing age, it reaches a higher lever in the later age than that of OPC due to the optimum mixing ratio and the continuous reaction of slag and phosphogypsum. Results obtained from this study have shown that non-clinker cement could be used as a replacement of OPC.

  • PDF

A Fluidity and Compressive Strength Properties of Blast Furnace Slag Based Non-Cement Paste Containing Ferronickel Slag Powder (페로니켈슬래그 미분말 혼입에 따른 고로슬래그 기반 무시멘트 페이스트의 유동성 및 압축강도 특성)

  • Kim, Young-Uk;Lee, Kyung-Su;Oh, Tae-Gue;Jeong, Su-Bin;Choi, Se-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.205-206
    • /
    • 2019
  • This study investigated the fluidity and compressive strength properties of blast furnace slag based non-cement paste containing ferronickel slag powder to evaluate the possibility of use in for cement replacement materials. As a result, the fluidity of non-cement paste showed a higher flow as the mixing ratio of ferronickel slag powder increased. The compressive strengths similar to those of the non-cement paste using only blast furnace slag powder were obtained when 5 and 10% of ferronickel slag powder were used.

  • PDF

Compressive Strength Characteristics of Non-Cement Composition Added with Limestone Powder (석회석미분말이 첨가된 비시멘트 조성물의 압축강도 특성)

  • Kim, Young-Min;Jung, Jae-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.178-179
    • /
    • 2019
  • The cement industry is a large amount of carbon dioxide emission industry, and research and development on non-cement composition is underway at the time when the absolute reduction of cement use is urgently needed. In addition, limestone fine powder is a by-product and is required to be recycled in terms of resource circulation. The compressive strength of the lime cement powder added noncement composition showed that the compressive strength increased as the limestone powder was added. It is believed that limestone fine powder played a role of stimulant such as alkali activator in non-cement composition.

  • PDF

An Experimental Study on the Non-Structural Lean Concrete's Dry Shrinkage with industrial by-product (산업부산물을 활용한 비구조용 콘크리트의 건조수축 특성에 관한 실험적 연구)

  • Hwang, Moo Yeon;Yang, Wan Hee;Park, Dong Cheol;Kim, Woo Jea
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.216-217
    • /
    • 2017
  • Slag cement or ternary blended cement is mainly used for non-structural lean concrete for the purpose of foundation work or protection of the waterproof layer on the roof of buildings. However, such non-structural lean concrete has a lot of drying shrinkage cracks, which makes it difficult to maintain the quality of the structure. Therefore, in this study, the compressive strength and the drying shrinkage of ternary blended cement(blended of portland cement, blast furnace slag, fly ash from combined heat and power Plant) for non-structural lean concrete were examined. As a result, it was confirmed that this non-structural lean concrete reduced drying shrinkage compared to the conventional ternary blended cement using fly ash from power plant.

  • PDF

Strength Properties of Non-cement Matrix Mixed with Tourmaline (토르마린을 혼입한 무시멘트 경화체의 강도 특성)

  • Kwon, Hyeong-Soon;Lee, Chang-woo;Hwang, Woo-Jun;Lee, Sang-soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.55-56
    • /
    • 2022
  • As global warming becomes serious, research is continuously being conducted to reduce CO2 emissions. Among building materials, the carbon emission of cement is so high that it accounts for 6.8% of the carbon emission of the entire industry. Studies replacement of cement with blast furnace slag and fly ash are steadily increasing. In addition, efforts are being made to reduce air pollution due to increased damage caused by increased concentrations of harmful substances such as fine dust and heavy metals in the air. There is an increasing number of studies that enable adsorption by mixing adsorbents into building materials. This study reviewed the strength properties to make an adsorbable non-cement finishing material by mixing tourmaline, an adsorbent, based on the non-cement composite, and confirmed that the strength decreases as the replacement ratio increases.

  • PDF

A Study on the Flexural Behavior of Concrete Using Non-burnt Cement (비소성 시멘트 콘크리트의 휨 거동에 관한 연구)

  • Yoo, S.W.;Nam, E.Y.;Lee, S.J.;Hwang, S.B.;Soh, Y.S.;Kim, J.S.
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.2
    • /
    • pp.49-56
    • /
    • 2012
  • If cement can be manufactured with industrial byproducts such as granulated blast furnace slag, phosphogypsum, and waste lime instead of clinker, there would be many advantages, including maximum use of these industrial byproducts for high value-added resources, conservation of natural resources and energy by omitting the use of clinker, minimized environmental pollution problems caused by CO2 discharge, and reduction of the production cost. By this reason, in this study, mechanical behavior tests of non-burnt cement concrete were performed, and elasticity modulus and stress-strain relationship of non-burnt cement concrete were proposed. 6 test members were manufactured and tested according to reinforcement ratio and concrete compressive strength. By the test results, there was no difference between ordinary concrete and non-burnt cement concrete of flexural behavior. In order to verify the proposed non-burnt cement concrete model, nonlinear analytical model was derived by using strain compatibility method. By the results of comparison between test results, ordinary concrete model and proposed model, The proposed model well predicted the flexural behavior of non-burnt cement concrete.

Strength Characteristics of Non-Sintered Cement Mortar Utilizing Ferro-Nickel Slag as Fine Aggregate (페로니켈슬래그를 잔골재로 사용한 비소성 시멘트 모르타르의 강도 특성)

  • Ryu, Ji-Su;Jang, Kyung-Su;Na, Hyeong-Won;Hyung, Won-Gil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.4
    • /
    • pp.359-367
    • /
    • 2023
  • This experimental study investigates the replacement of conventional Portland cement and sand with non-sintered cement and ferro-nickel slag to formulate eco-friendly cement mortar. The examination aimed to understand the strength properties of non-sintered cement mortar using ferro-nickel slag as fine aggregate by classifying mortar production types, fine aggregates, and curing methodologies. From flexural and compressive strength tests, it was observed that non-sintered cement mortars, incorporating ferro-nickel slag as fine aggregate, exhibited superior strength when compared to both plain mortar and steam-cured non-sintered mortar. This increased strength is attributed to the influence of the particle size, density, and absorption capabilities of the ferro-nickel slag. Furthermore, X-ray Diffraction(XRD) analyses of the mortars verified the presence of MgO, a component of ferro-nickel slag, in the form of a composite oxide. This finding substantiates the consistent strength manifestation of non-sintered cement mortars utilizing ferro-nickel slag as a fine aggregate.

Physical, Mechanical Properties and Freezing and Thawing Resistance of Non-Cement Porous Vegetation Concrete Using Non-Sintering Inorganic Binder (비소성 무기결합재를 사용한 무시멘트 다공성 식생콘크리트의 물리·역학적 특성 및 동결융해저항성 평가)

  • Kim, Hwang Hee;Kim, Chun Soo;Jeon, Ji Hong;Park, Chan Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.5
    • /
    • pp.37-44
    • /
    • 2014
  • The physical, mechanical and freezing and thawing properties of non cement porous vegetation concrete using non-sintering inorganic binder have been evaluated in this study. Four types of porous vegetation concrete according to the binder type is evaluated. The pH value, void ratio, compressive strength, repeated freezing and thawing properties were tested. The test results indicate that the physical, mechanical and repeated freezing and thawing properties of porous vegetation concrete using the non-sintering inorganic binder is increased or equivalent compared to the porous vegetation concrete using the blast furnace slag + cement and hwang-toh + cement binders. Also, Vegetation monitoring test results indicate the porous vegetation concrete using the non-sintering inorganic binder have increasing effects of vegetation growth.

A Study on the Compressive Strength Properties of the Ternary Blended Non-Cement Concrete using Ternary Diagram (삼각조성도를 통한 3성분계 무시멘트 콘크리트의 압축강도 특성 연구)

  • Jung, Yu-Jin;Kim, Young-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.2
    • /
    • pp.41-49
    • /
    • 2020
  • To improve the problem of strength reduction of unary and binary blended non-cement concrete that occur at room temperature, comparative analysis was conducted based on the slump and compressive strength properties of ternary blended non-cement concrete in which cement was replaced with silica fume, fly ash, and blast furnace slag, and the following conclusions were drawn. The ternary blended non-cement concrete showed higher compressive strength than binary binder concrete, and the slump reduction was less when 10% silica fume was mixed. In addition, the appropriate composition ratio range of each by-product was suggested according to slump and compressive strength level based on ternary diagram.