• Title/Summary/Keyword: Non-contact ultrasonic

Search Result 100, Processing Time 0.038 seconds

Study on Non-contact Ultrasonic Transducer for Measurement of Fruit Firmness (과실 경도측정을 위한 비접촉 초음파 변환기 연구)

  • Lee, Sang-Dae;Ha, Tae-Hoon;Kim, Ki-Bok;Kim, Man-Soo
    • Journal of Biosystems Engineering
    • /
    • v.35 no.3
    • /
    • pp.189-196
    • /
    • 2010
  • This study was conducted to develop an non-contact ultrasonic transducer for measurement of fruit firmness. The center frequency of non-contact ultrasonic transducer was 500 kHz. As an active element of non-contact ultrasonic transducer, the 1-3 piezoelectric composite material was selected. That material has high piezoelectric properties such as electro-mechanical coupling factor, $k_t$ and piezoelectric voltage constant, $d_{33}$ and also that material has low acoustical impedance which enables to matching the acoustical impedances between piezoelectric material and air. As a front matching material between 1-3 piezoelectric composite material and air, various kinds of paper with different thickness were tested. To control the dead-zone of the fabricated non-contact ultrasonic transducer, the backing material composed of epoxy resin and tungsten powder were made and evaluated. The fabricated non-contact ultrasonic transducer for fruit showed that the cneter frequency, bandwidth and beamwidth were approximately 480 kHz, 30 % and 12 mm, respectively. It was concluded that non-contact measurement of apple firmness would be possible by using the fabricated non-contact ultrasonic transducer.

Predicting the Firmness of Apples using a Non-contact Ultrasonic Technique

  • Lee, Sangdae;Park, Jeong-Gil;Jeong, Hyun-Mo;Kim, Ki-Bok;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.38 no.3
    • /
    • pp.192-198
    • /
    • 2013
  • Purpose: Methods for non-destructive estimation of product quality have been reported in various industrial fields, but the application of ultrasonic techniques for the agricultural products of potatoes, pears, apples, watermelons, kiwis and tomatoes etc. have been rarely reported since the application of a contact-type ultrasonic transducer in agricultural products is very difficult. Therefore, this study sought to determine the firmness of apples using non-contact ultrasonic techniques. Methods: For this experiment, an ultrasonic experimental tester using a non-contact ultrasonic transducer was created, and a signal processing program was used to analyze the acquired ultrasonic reflected signal. Also, a universal testing machine was used to measure firmness parameters of the apples such as bioyield strength, a firmness factor, after the ultrasonic tests had been performed. Results: Six distance correction factors were calculated to obtain consistent values of ultrasonic properties regardless of the distance between the transducer and the surface of the subject. We developed prediction models of the bioyield strength using the distance correction factors. Conclusions: The optimum prediction model of the bioyield strength of apples using a non-contact ultrasonic technique was a multiple regression model ($R^2=0.9402$).

Laser-Ultrasonics Application for Non-Contact and Non-destructive Evaluation of Structure (구조물의 비접촉 비파괴 검사를 위한 레이저 초음파법 적용)

  • Kim Jae-Yeal;Song Kyung-Seok;Yang Dong-Jo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.4
    • /
    • pp.49-54
    • /
    • 2005
  • Measuring defects on the inside and on the surface of a steel structure is very important technology in order to predict the life span of the structure. In particular, a place with a high probability that it may contain defects is a welded part and it is very important to check defects in the part, absence/presence of non-uniform substances, its shape, and the location. Many non-destructive tests can be applied, but the ultrasonic flow detection test is widely used with some advantages. The ultrasonic flow detection test, however, cannot be applied when there is a problem by a contact medium between PZT and a specimen, in case of a small and complicated shape or a moving object or when the specimen is hot. In this study, to solve the problems of the contact ultrasonic flow detection test, the non-contact ultrasonic flow detection test for sending/receiving ultrasonic waves using lasers was described. I intended to develop a non-destructive detection system applying the laser application ultrasonic test to a steel structure by detecting the defects inside of and on the surface of the specimen.

Nondestructive Measurement of Cheese Texture using Noncontact Air-instability Compensation Ultrasonic Sensors

  • Baek, In Suck;Lee, Hoonsoo;Kim, Dae-Yong;Lee, Wang-Hee;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.37 no.5
    • /
    • pp.319-326
    • /
    • 2012
  • Purpose: Cheese texture is an important sensory attribute mainly considered for consumers' acceptance. The feasibility of nondestructive measurements of cheese texture was explored using non-contact ultrasonic sensors. Methods: A novel non-contact air instability compensation ultrasonic technique was used for five varieties of hard cheeses to measure ultrasonic parameters, such as velocity and attenuation coefficient. Five texture properties, such as fracturability, hardness, springiness, cohesiveness, and chewiness were assessed by a texture profile analysis (TPA) and correlated with the ultrasonic parameters. Results: Texture properties of five varieties of hard cheese were estimated using ultrasonic parameters with regression analysis models. The most effective model predicted the fracturability, hardness, springiness, and chewiness, with the determination coefficients of 0.946 (RMSE = 21.82 N), 0.944 (RMSE = 63.46 N), 0.797 (RMSE = 0.06 ratio), and 0.833 (RMSE = 17.49 N), respectively. Conclusions: This study demonstrated that the non-contact air instability compensation ultrasonic sensing technique can be an effective tool for rapid and non-destructive determination of cheese texture.

Research on the Non-Contact Detection of Internal Defects in a Rail using Ultrasonic Waves (비접촉 초음파 방식의 철도레일 내부결함 검출에 관한 연구)

  • Han, Soon Woo;Cho, Seung Hyun;Kim, Joon Woo;Heo, Tae Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.617-625
    • /
    • 2012
  • Non-contact detection of internal defects in a rail using ultrasonic waves is discussed in this paper. Cracks in a rail may be a cause of a serious railway accident such as derailment if left undetected. Concurrent rail inspection method based on ultrasonic testing using piezoelectric transducers has several limitations as it should keep physical contact with the rail. This work suggests a non-contact detection of internal defects in a rail using ElectroMagnetic Acoustic Transducers (EMAT) which can produce and measure ultrasonic waves in a rail without any couplant. The EMATs for rail inspection are designed and fabricated and their working performance is verified through a series of experiments on various types of internal defects in test rails. The effect of lift-off between the transducers and the rail on the generated signals is also discussed.

  • PDF

Guided-Wave Tomographic Imaging of Plate Defects by Laser-Based Ultrasonic Techniques

  • Park, Junpil;Lim, Juyoung;Cho, Younho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.6
    • /
    • pp.435-440
    • /
    • 2014
  • Contact-guided-wave tests are impractical for investigating specimens with limited accessibility and rough surfaces or complex geometric features. A non-contact setup with a laser-ultrasonic transmitter and receiver is quite attractive for guided-wave inspection. In the present work, we developed a non-contact guided-wave tomography technique using the laser-ultrasonic technique in a plate. A method for Lamb-wave generation and detection in an aluminum plate with a pulsed laser-ultrasonic transmitter and Michelson-interferometer receiver was developed. The defect shape and area in the images obtained using laser scanning, showed good agreement with the actual defect. The proposed approach can be used as a non-contact online inspection and monitoring technique.

A Structure Non-Contact and Non-destructive Evaluation Using Laser-Ultrasonics Application (구조물의 비접촉 비파괴 검사를 위한 레이저 초음파법 적용)

  • Kim Jae-Yeal;Song Kyung-Seok;Yang Dong-Jo;Kim You-Hong
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.71-76
    • /
    • 2005
  • The defects evaluation of the interior and the surface would be considered as vital characteristics in predicting the total life span of the steel structure. More importantly, the understandings in the interior composite of welding zone and the notifications in the presence, the formation, and the positioning of the non-metallic inclusion are necessary as well, since there were signs of relatively high defect frequency presented in the welding zone. The ultrasonic testing is a highly recommended technique chosen from among other techniques because of variety of advantages in conducting the non-destructive testing for the welding zone. However, the ultrasonic testing had technical disadvantages referred as followings; the problems due to the couplant between the PZT and the specimen, the formations that were miniature and complex, the moving subject, and the high temperature surrounding the specimen. This research was conducted to resolve the technical disadvantages of the contact ultrasonic testing by studying the non-contact ultrasonic testing where the ultrasonic waves were transferred by the laser, and revealing the specimen defects at its interior part and its surface part. The ultimate goal of this research was to develop a non-destructive evaluation applying the laser manipulated ultrasonic method for the steel structure.

  • PDF

Research on the Non-Contact Detection of Internal Defects in a Rail Using Ultrasonic Waves (비접촉 초음파 방식의 철도레일 내부결함 검출에 관한 연구)

  • Han, Soon-Woo;Cho, Seung-Hyun;Kim, Joon-Woo;Heo, Tae-Hoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.10
    • /
    • pp.1010-1019
    • /
    • 2012
  • Non-contact detection of internal defects in a rail using ultrasonic waves is discussed in this paper. Cracks in a rail may be the cause of a serious railway accident such as derailment if left undetected. Concurrent rail inspection method based on ultrasonic testing using piezoelectric transducers has several limitations as it should keep physical contact with the rail. This work suggests a non-contact detection of internal defects in a rail using ElectroMagnetic Acoustic Transducers (EMAT) which can produce and measure ultrasonic waves in a rail without any couplant. The EMATs for rail inspection are designed and fabricated and their working performance is verified through a series of experiments on various types of internal defects in test rails. The effect of lift-off between the transducers and the rail on the generated signals is also discussed.

Development of Ultrasonic Transducer for Nondestructive Evaluation of Whole Fruit (과실 비파괴평가용 초음파 변환기 개발)

  • Kim, K.B.;Lee, S.D.;Kim, M.S.
    • Journal of Biosystems Engineering
    • /
    • v.32 no.4
    • /
    • pp.269-275
    • /
    • 2007
  • In this study, ultrasonic transducers for non-destructive contact measurement of whole fruits were developed. The design parameters for ultrasonic transducer such as acoustical impedance of fruits, kinds of piezoelectric materials, ultrasonic wave frequency, and transducer diameter were investigated. In order to match the acoustical impedance between piezoelectric material and fruit, various materials were fabricated and evaluated. Also to control the sensitivity and bandwidth of the ultrasonic transducer, various backing materials were fabricated and evaluated. Especially, the wear plate of the ultrasonic transducer was designed and fabricated considering the curvature of fruit. The central frequencies of two developed ultrasonic transducers were about 100 kHz and 200 kHz, respectively. With the developed ultrasonic transducers, non-destructive evaluation of the fruit will be possible.

Preliminary Study of the Measurement of Foreign Material in Galvanic Corrosion Using Laser Ultrasonic

  • Hong, Kyung Min;Kang, Young June;Park, Nak Kyu;Choi, In Young
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.323-327
    • /
    • 2013
  • A laser ultrasonic inspection system has the advantage of nondestructive testing. It is a non-contact mode using a laser interferometer to measure the vertical displacement of the surface of a material caused by the propagation of ultrasonic signals with the remote ultrasonic generated by laser. After raising the ultrasonic signal with a broadband frequency range using a pulsed laser beam, the laser beam is focused to a small point to measure the ultrasonic signal because it provides an excellent measurement resolution. In this paper, foreign materials are measured by a non-destructive and non-contact method using the laser ultrasonic inspection system. Mixed foreign material on the corroded part is assumed and the laser ultrasonic experiment is conducted. An ultrasonic wave is generated by pulse laser from the back of the specimen and an ultrasonic signal is acquired from the same location of the front side using continuous wave laser and Confocal Fabry-Perot Interferometer (CFPI). The characteristic of the ultrasonic signal of existing foreign material is analyzed and the location and size of foreign material is measured.