• Title/Summary/Keyword: Non-isothermal crystallization

Search Result 26, Processing Time 0.036 seconds

Non-isothermal Crystallization Behaviors of Ethylene-Tetrafluoroethylene Copolymer (에틸렌-테트라플르오르에틸렌 공중합체의 비등온 결정화 거동)

  • Lee, Jaehun;Kim, Hyokap;Kan, Ho-Jong
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.803-809
    • /
    • 2012
  • The non-isothermal crystallization behavior of ethylene-tetrafluoroethylene (ETFE) copolymer was investigated by DSC and imaging FTIR analysis. Modified non-isothermal Avrami analysis was applied to interpret the crystallization behavior of ETFE. It was found that the less linearity in ln[-ln(1-X(t))] vs. ln(t) plot was obtained in thermal analysis comparison with imaging FTIR due to relatively small crystallization enthalpy change in ETFE. It means that imaging FTIR measured by overall IR absorption intensity change due to the crystallization was found to be effective to understand the non-isothermal crystallization kinetics of ETFE. In addition, the optical transmittance of ETFE was studied. The crystallite developed by slow cooling caused the light scattering and resulted in the increase of haze and the lowering of transmittance up to 8%. From our results, it was confirmed that cooling rate is an important processing parameter for maintaining optical transmittance of ETFE as a replacement material for glass.

Synthesis and Non-Isothermal Crystallization Behavior of Poly (ethylene-co-1,4-butylene terephthalate)s

  • Jinshu Yu;Deri Zhou;Weimin Chai;Lee, Byeongdu;Le, Seung-Woo;Jinhwan Yoon;Moonhor Ree
    • Macromolecular Research
    • /
    • v.11 no.1
    • /
    • pp.25-35
    • /
    • 2003
  • A series of random poly(ethylene-co-1,4-butylene terephthalate)s (PEBTs), as well as poly(ethylene terephthalate) (PET) and poly(1,4-butylene terephthalate) (PBT), were synthesized by the bulk polycondensation. Their composition, molecular weight, and thermal properties were determined. All the copolymers are crystallizable, regardless of the compositions, which may originate from both even-atomic-numbered ethylene terephthalate and butylenes terephthalate units that undergo inherently crystallization. Non-isothermal crystallization exotherms were measured over the cooling rate of 2.5-20.0 K/min by calorimetry and then analyzed reasonably by the modified Avrami method rather than the Ozawa method. The results suggest that the primary crystallizations in the copolymers and the homopolymers follow a heterogeneous nucleation and spherulitic growth mechanism. However, when the cooling rate increases and the content of comonomer unit (ethylene glycol or 1,4-butylene glycol) increases, the crystallization behavior still becomes deviated slightly from the prediction of the modified Avrami analysis, which is due to the involvement of secondary crystallization and the formation of relatively low crystallinity. Overall, the crystallization rate is accelerated by increasing cooling rate but still depended on the composition. In addition, the activation energy in the non-isothermal crystallization was estimated.

Synthesis and Non-Isothermal Crystallization Behaviors of Maleic Anhydride onto High Density Polyethylene

  • Ahn, Youngjun;Jeon, Jong Hyuk;Baek, Chul Seoung;Yu, Young Hwan;Thenepalli, Thriveni;Ahn, Ji Whan;Han, Choon
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.24-33
    • /
    • 2016
  • The grafting reaction for maleic anhydride (MA) onto high density polyethylene (HDPE) was investigated from solution process with initiators. The chemical modification of neat HDPE was carried out with various contents of MA (3-21 wt.%) and initiator (0.2-1 wt.%) at different temperature ($80-130^{\circ}C$). The grafting degree was obtained from the titration and the highest grafting degree was 3.1%. The grafting degree increased as the content of MA and initiator increased, however, the highest grafting degree was demonstrated for a particular content of MA and initiator. In the non-isothermal crystallization kinetics, the Ozawa model was unsuitable method to investigate the crystallization behavior of MA onto HDPE, whereas the Avrami and Liu models found effective. The crystallization rate was accelerated as the cooling rate increased, but postponed by combination of MA onto neat HDPE backbone.

Crystallization Mechanism of Lithium Dislicate Glass with Various Particle Sizes (Lithium disilicate 유리의 입자크기에 따른 결정화 기구)

  • Choi, Hyun Woo;Yoon, Hae Won;Yang, Yong Suk;Yoon, Su Jong
    • Korean Journal of Materials Research
    • /
    • v.26 no.1
    • /
    • pp.54-60
    • /
    • 2016
  • We have investigated the crystallization mechanism of the lithium disilicate ($Li_2O-2SiO_2$, LSO) glass particles with different sizes by isothermal and non-isothermal processes. The LSO glass was fabricated by rapid quenching of melt. X-ray diffraction and differential scanning calorimetry measurements were performed. Different crystallization models of Johnson-Mehl-Avrami, modified Ozawa and Arrhenius were adopted to analyze the thermal measurements. The activation energy E and the Avrami exponent n, which describe a crystallization mechanism, were obtained for three different glass particle sizes. Values of E and n for the glass particle with size under $45{\mu}m$, $75{\sim}106{\mu}m$, and $125{\sim}150{\mu}m$, were 2.28 eV, 2.21 eV, 2.19 eV, and ~1.5 for the isothermal process, respectively. Those values for the non-isothermal process were 2.4 eV, 2.3 eV, 2.2 eV, and ~1.3, for the isothermal process, respectively. The obtained values of the crystallization parameters indicate that the crystallization occurs through the decreasing nucleation rate with a diffusion controlled growth, irrespective to the particle sizes. It is also concluded that the smaller glass particles require the higher heat absorption to be crystallized.

Non-isothermal Crystallization Behavior of Poly(glycolide-co-ε-caprolactone-co-L-lactide) Block Copolymer (생체분해성 Poly(glycolide-co-ε-caprolactone-co-L-lactide) 블록 공중합물의 비등온 결정화 거동에 관한 연구)

  • Choi, Sei-Young;Song, Seung-Ho
    • Elastomers and Composites
    • /
    • v.49 no.1
    • /
    • pp.13-23
    • /
    • 2014
  • In this work, glycolide, L-lactide and ${\varepsilon}$-caprolactone monomers were polymerized into the triblock copolymers by two step polymerization method and their non-isothermal crystallization behaviors were studied by combination of modified Avrami and Ozawa formula for further analysis of their behaviors. The result showed that PGCLA21 gave the highest value for supercooling analysis and super cooling degree increased with L-lactide content. Crystallization velocity constant, however, showed no significant change. The result of cooling function in specific relative crystallization degree showed that the increase of L-lactide content made an effect on the more enhancement of crystallization velocity of the PGCLA than PGCL. The result of big logF(T) value with the L-lactide content above critical point for PGCLA41 and PGCLA21 showed that bigger cooling velocity needed to gain same crystal size compared with PGCL. This means that it gives negative effect in the increase of crystallization velocity.

Study on the Non-isothermal Crystallization Behavior of Polypropylene/Corn Starch-MB Blends (폴리프로필렌/옥수수전분 블렌드의 비등온결정화 거동 연구)

  • Kim, Youn-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.5
    • /
    • pp.1125-1129
    • /
    • 2008
  • Polypropylene (PP)/corn starch master batch(starch-MB) blends with different PP compositions of 90, 80, 70, and 60 wt% were prepared by melt compounding at $200^{\circ}C$, using lab scale Brabender mixer. The chemical structures, thermal properties and non-isothermal crystallization behavior of the PP/starch-MB blends were investigated by FT-infrared spectrometry (FT-IR), differential scanning calorimetry (DSC), and thermogravimetric analyzer (TGA). The fabrication of the PP/starch-MB blend was confirmed by the existence of hydroxy group in FT-IR spectrum. There was no district change in melting temperature and melting enthalpy, and TGA curve indicates a decrease in degradation temperature with starch-MB content. The non-isothermal crystallization process was analyzed using by Avrami equation. The Avrami exponents were in the range of 2.71-3.97 for PP and 1.48-1.99 for PP/starch-MB blonds. The activation energies calculated by Kissinger method were 233 kJ/mol for PP, 484 kJ/mol for PP90, 541 kJ/mol for PP80, 553 kJ/mol for PP70, and 422 kJ/mol for PP60.

Crystallization Behaviour of PP and Carbon Nanofibre Blends

  • Chatterjee, A.;Deopura, B.L.
    • Fibers and Polymers
    • /
    • v.4 no.3
    • /
    • pp.102-106
    • /
    • 2003
  • Crystallization behaviour of blends of different MFI isotactic polypropylenes (PP), and blends of PP with carbon nanofibre have been investigated by DSC and polarizing optical microscope. Both higher MFI PP component and the carbon nanofibre in the blend influence the nucleation activity of the melt during non-isothermal crystallization. In presence of carbon nanofibre, the sherulitic growth rate is highly disturbed. The calculation of nucleation activity indicates that carbon nanofibres act as active substrate for heterogeneous nucleation.

The Crystallization Kinetics of CaO-MgO-Al2O3-SiO2 Glass System Using Thermal Analysis (열분석을 이용한 CaO-MgO-Al$_2$O$_3$-SiO$_2$의 결정화 기구의 연구)

  • 김형순
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.1
    • /
    • pp.9-14
    • /
    • 1992
  • Some of non-isothermal analysis methods are applied to CaO-MgO-Al2O3-SiO2 glass system to find the kinetics parameters of crystallisation, activation energy, Avrami component and frequency factor. The results using the non-isothermal analysis were compared to that of microstructure experiment. Analysis of the result has enabled to some methods to be to recommend as being the most appropriate equation to use in a glass system. It was shown that in the thermal analysis using the non-isothermal method of Kissinger, Augis-Bennett, Bansal, and Marotta, the calculation of activation energy is not much different, while Avrami component and frequency factor are different from applied each methods.

  • PDF

Study on the Non-isothermal Crystallization Kinetics of Branched Polypropylene (분지형 폴리프로필렌의 비등온결정화 거동 연구)

  • Yoon, Kyung-Hwa;Shin, Dong-Yup;Kim, Youn-Cheol
    • Polymer(Korea)
    • /
    • v.36 no.2
    • /
    • pp.245-250
    • /
    • 2012
  • Branched polypropylenes (PP) with long chain branch were prepared by solid state reaction with three different branching agent of 0.3 wt% content. The chemical structures, non-isothermal crystallization behavior and complex viscosity of the branched PP were investigated by FTIR, DSC, optical microscope, and dynamic rheological measurement. The chemical structure of the branched PP was confirmed by the existence of =C-H stretching peak of the branching agent at 3100 $cm^{-1}$. There was no distinct change in melting temperature in case of PP-D-0-3 and PP-F-0-3, but PP-H-0-3 indicated a decrease in melting temperature. The decrease in melting temperature was interpreted by the fact that the degradation reaction of PP was more dominant than branched reaction, and confirmed by a decrease in complex viscosity. The non-isothermal crystallization behavior of the branched PP was analyzed using by Avrami equation. The Avrami exponent of PP was 3, and the values of the branched PP with DVB and FS were below 3. The activation energy of PP calculated by Kissinger method was 25 kJ/mol, and there were no big difference in activation energies of the branched PPs compared to PP.