• Title/Summary/Keyword: Non-iterative method

Search Result 239, Processing Time 0.026 seconds

Non-iterative pulse tail extrapolation algorithms for correcting nuclear pulse pile-up

  • Mohammad-Reza Mohammadian-Behbahani
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4350-4356
    • /
    • 2023
  • Radiation detection systems working at high count rates suffer from the overlapping of their output electric pulses, known as pulse pile-up phenomenon, resulting in spectrum distortion and degradation of the energy resolution. Pulse tail extrapolation is a pile-up correction method which tries to restore the shifted baseline of a piled-up pulse by extrapolating the overlapped part of its preceding pulse. This needs a mathematical model which is almost always nonlinear, fitted usually by a nonlinear least squares (NLS) technique. NLS is an iterative, potentially time-consuming method. The main idea of the present study is to replace the NLS technique by an integration-based non-iterative method (NIM) for pulse tail extrapolation by an exponential model. The idea of linear extrapolation, as another non-iterative method, is also investigated. Analysis of experimental data of a NaI(Tl) radiation detector shows that the proposed non-iterative method is able to provide a corrected spectrum quite similar with the NLS method, with a dramatically reduced computation time and complexity of the algorithm. The linear extrapolation approach suffers from a poor energy resolution and throughput rate in comparison with NIM and NLS techniques, but provides the shortest computation time.

An Iterative Posterior Preference Articulation Approach to Dual Response Surface Optimization (쌍대반응표면최적화를 위한 반복적 선호도사후제시법)

  • Jeong, In-Jun
    • Journal of Korean Society for Quality Management
    • /
    • v.40 no.4
    • /
    • pp.481-496
    • /
    • 2012
  • Purpose: This paper aims at improving inefficiency of an existing posterior preference articulation method proposed for dual response surface optimization. The method generates a set of non-dominated solutions and then allows a decision maker (DM) to select the best solution among them through an interval selection strategy. Methods: This paper proposes an iterative posterior preference articulation method, which repeatedly generates the predetermined number of non-dominated solutions in an interval which becomes gradually narrower over rounds. Results: The existing method generates a good number of non-dominated solutions not used in the DM's selection process, while the proposed method generates the minimal number of non-dominated solutions necessitated in the selection process. Conclusion: The proposed method enables a satisfactory compromise solution to be achieved with minimal cognitive burden of the DM as well as with light computation load in generating non-dominated solutions.

A NON-OVERLAPPING DOMAIN DECOMPOSITION METHOD FOR A DISCONTINUOUS GALERKIN METHOD: A NUMERICAL STUDY

  • Eun-Hee Park
    • Korean Journal of Mathematics
    • /
    • v.31 no.4
    • /
    • pp.419-431
    • /
    • 2023
  • In this paper, we propose an iterative method for a symmetric interior penalty Galerkin method for heterogeneous elliptic problems. The iterative method consists mainly of two parts based on a non-overlapping domain decomposition approach. One is an intermediate preconditioner constructed by understanding the properties of the discontinuous finite element functions and the other is a preconditioning related to the dual-primal finite element tearing and interconnecting (FETI-DP) methodology. Numerical results for the proposed method are presented, which demonstrate the performance of the iterative method in terms of various parameters associated with the elliptic model problem, the finite element discretization, and non-overlapping subdomain decomposition.

A QUADRATICALLY CONVERGENT ITERATIVE METHOD FOR NONLINEAR EQUATIONS

  • Yun, Beong-In;Petkovic, Miodrag S.
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.3
    • /
    • pp.487-497
    • /
    • 2011
  • In this paper we propose a simple iterative method for finding a root of a nonlinear equation. It is shown that the new method, which does not require any derivatives, has a quadratic convergence order. In addition, one can find that a hybrid method combined with the non-iterative method can further improve the convergence rate. To show the efficiency of the presented method we give some numerical examples.

On Robust MMSE-Based Filter Designs for Multi-User Peer-to-Peer Amplify-and-Forward Relay Systems (증폭 및 전달 릴레이 기반 다중 사용자 피어투피어 통신 시스템에서 강인한 MMSE 필터 설계 방법)

  • Shin, Joonwoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.9
    • /
    • pp.798-809
    • /
    • 2013
  • In this paper, we propose robust relay and destination filter design methods for the multi-user peer-to-peer amplify-and-forward relaying systems while taking imperfect channel knowledge into consideration. Specifically, the relay and destination filter sets are developed to minimize the sum mean-squared-error (MSE). We first present a robust joint optimum relay and destination filter calculation method with an iterative algorithm. Motivated by the need to reduce computational complexity of the iterative scheme, we then formulate a simplified sum MSE minimization problem using the relay filter decomposability, which lead to two robust sub-optimum non-iterative design methods. Finally, we propose robust modified destination filter design methods which require only local channel state information between relay node and a specific destination node. The analysis and simulation results verify that, compared with the optimum iterative method, the proposed non-iterative schemes suffer a marginal loss in performance while enjoying significantly improved implementation efficiencies. Also it is confirmed that the proposed robust filter design methods provide desired robustness in the presence of channel uncertainty.

Evaluation of Non-iterative Shimming Using 2-D Field Map Compared with Simplex Shimming

  • Park, Min-Seok;Kim, Si-Seung;Park, Dae-Jun;Chung, Sung-Taek
    • Proceedings of the KSMRM Conference
    • /
    • 2001.11a
    • /
    • pp.152-152
    • /
    • 2001
  • Purpose: The most common instrumental approach to automatic shimming has been based on iterativ. optimization routine(e.g., simplex) to adjust shim settings to maximize the envelope of the FID. Disadvantage of iterative method, however, is very long to compute shim values. Thi paper supposes a non-iterative method that uses 2-D field map to adjust shim settin rapidly.

  • PDF

ITERATIVE REWEIGHTED ALGORITHM FOR NON-CONVEX POISSONIAN IMAGE RESTORATION MODEL

  • Jeong, Taeuk;Jung, Yoon Mo;Yun, Sangwoon
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.719-734
    • /
    • 2018
  • An image restoration problem with Poisson noise arises in many applications of medical imaging, astronomy, and microscopy. To overcome ill-posedness, Total Variation (TV) model is commonly used owing to edge preserving property. Since staircase artifacts are observed in restored smooth regions, higher-order TV regularization is introduced. However, sharpness of edges in the image is also attenuated. To compromise benefits of TV and higher-order TV, the weighted sum of the non-convex TV and non-convex higher order TV is used as a regularizer in the proposed variational model. The proposed model is non-convex and non-smooth, and so it is very challenging to solve the model. We propose an iterative reweighted algorithm with the proximal linearized alternating direction method of multipliers to solve the proposed model and study convergence properties of the algorithm.

Fast Iterative Solving Method of Fuzzy Relational Equation and its Application to Image Compression/Reconstruction

  • Nobuhara, Hajime;Takama, Yasufumi;Hirota, Kaoru
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.1
    • /
    • pp.38-42
    • /
    • 2002
  • A fast iterative solving method of fuzzy relational equation is proposed. It is derived by eliminating a redundant comparison process in the conventional iterative solving method (Pedrycz, 1983). The proposed method is applied to image reconstruction, and confirmed that the computation time is decreased to 1 / 40 with the compression rate of 0.0625. Furthermore, in order to make any initial solution converge on a reconstructed image with a good quality, a new cost function is proposed. Under the condition that the compression rate is 0.0625, it is confirmed that the root mean square error of the proposed method decreases to 27.34% and 86.27% compared with those of the conventional iterative method and a non iterative image reconstruction method, respectively.

Out-of-plane elastic buckling of truss beams

  • Fedoroff, Alexis;Kouhia, Reijo
    • Structural Engineering and Mechanics
    • /
    • v.45 no.5
    • /
    • pp.613-629
    • /
    • 2013
  • In this article we will present a method to directly evaluate the critical point of a non-linear system by using the solution of a polynomial eigenvalue approximation as a starting point for an iterative non-linear system solver. This method will be used to evaluate out-of-plane buckling properties of truss structures for which the lateral displacement of the upper chord has been prevented. The aim is to assess for a number of example structures whether or not the linearized eigenvalue solution gives a relevant starting point for an iterative non-linear system solver in order to find the minimum positive critical load.

Three-Dimensional Grid Generation Method for an Orthogonal Grid at the Boundary by Using Boundary Element Method (경계요소법을 이용한 경계에 직교하는 삼차원 격자형성법)

  • Jeong H. K.;Kwon J. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.82-89
    • /
    • 1995
  • In the present paper, a method of nearly orthogonal grid generation in an arbitrary simply-connected 3D domain will be presented. The method is a new direct and non-iterative scheme based on the concept of the decomposition of the global orthogonal transformation into consecutive mapping of a conformal mapping and an auxiliary orthogonal mapping, which was suggested by King and Leal [4]. In our numerical scheme. Kang and Leal's method is extended from 2D problems to 3D problems while the advantage of the non-iterative algorithm is maintained. The essence of the present mapping method is that an iterative scheme can be avoided by introducing a preliminary step. This preliminary step corresponds to a conformal map and is based on the boundary element method(BEM). This scheme is applied to generate several nearly-orthogonal grid systems which are orthogonal at boundaries.

  • PDF