• Title/Summary/Keyword: Non-linear regression method

Search Result 217, Processing Time 0.036 seconds

Frequency Analysis of Extreme High Water Level Considering Tide/Surge Characteristic Changes (조석/해일 환경병화를 감안한 고극조위 빈도분석)

  • Kang, Ju Whan;Moon, Seung Rok;Park, Seon Jung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1B
    • /
    • pp.99-106
    • /
    • 2006
  • Due to both global warming and constructions of seadike/seawalls, continuously or abruptly rising tendencies of extreme high water levels have been detected at Kunsan and Mokpo harbors. This paper deals firstly with the separation of each effect, namely global warming effect and construction effect, on increases of water level quantitatively by a linear regression method. And then, it can be explained why and how the extreme high water levels had been risen just after constructions at both harbors. A numerical simulation of $M_2$ tidal constituent at Mokpo coastal zone shows that the tidal amplification by constructions is mainly due to the extinguishment of TCE at Mokpogu. The tidal flat effect makes the amplification more deepen at spring tide or extreme high tide, which results in the increase of inundation risk at Mokpo harbor. A frequency analysis method is applied, which is shown to be effective at such a site of having non-homogeneous tidal data due to constructions as Mokpo harbor.

Non-stationary Rainfall Frequency Analysis Based on Residual Analysis (잔차시계열 분석을 통한 비정상성 강우빈도해석)

  • Jang, Sun-Woo;Seo, Lynn;Kim, Tae-Woong;Ahn, Jae-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5B
    • /
    • pp.449-457
    • /
    • 2011
  • Recently, increasing heavy rainfalls due to climate change and/or variability result in hydro-climatic disasters being accelerated. To cope with the extreme rainfall events in the future, hydrologic frequency analysis is usually used to estimate design rainfalls in a design target year. The rainfall data series applied to the hydrologic frequency analysis is assumed to be stationary. However, recent observations indicate that the data series might not preserve the statistical properties of rainfall in the future. This study incorporated the residual analysis and the hydrologic frequency analysis to estimate design rainfalls in a design target year considering the non-stationarity of rainfall. The residual time series were generated using a linear regression line constructed from the observations. After finding the proper probability density function for the residuals, considering the increasing or decreasing trend, rainfalls quantiles were estimated corresponding to specific design return periods in a design target year. The results from applying the method to 14 gauging stations indicate that the proposed method provides appropriate design rainfalls and reduces the prediction errors compared with the conventional rainfall frequency analysis which assumes that the rainfall data are stationary.

The Variation of Water Temperature and Turbidity of Stream Flows entering Imha Reservoir (임하호 유입지천의 수온과 탁도 변화)

  • Kim, Woo-Gu;Jung, Kwan-Soo;Yi, Yong-Kon
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.1 s.115
    • /
    • pp.13-20
    • /
    • 2006
  • The changing patterns of water temperature and turbidity in streams entering Imha Reservoir were studied. The turbidity variation near the intake tower in Imha Reservoir was investigated in relation with the variation of water temperature and turbidity in streams. Water temperature was estimated using multi-regression method with air temperature and dew point as independent variables. Peak turbidity was also estimated using non-linear regression method with rainfall intensity as an independent variable. Although more independent variables representing watershed characteristics seem to be needed to increase estimation accuracies, the methodology used in this study can be applied to estimate water temperature and peak turbidity in other streams.

A Study of Anomaly Detection for ICT Infrastructure using Conditional Multimodal Autoencoder (ICT 인프라 이상탐지를 위한 조건부 멀티모달 오토인코더에 관한 연구)

  • Shin, Byungjin;Lee, Jonghoon;Han, Sangjin;Park, Choong-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.57-73
    • /
    • 2021
  • Maintenance and prevention of failure through anomaly detection of ICT infrastructure is becoming important. System monitoring data is multidimensional time series data. When we deal with multidimensional time series data, we have difficulty in considering both characteristics of multidimensional data and characteristics of time series data. When dealing with multidimensional data, correlation between variables should be considered. Existing methods such as probability and linear base, distance base, etc. are degraded due to limitations called the curse of dimensions. In addition, time series data is preprocessed by applying sliding window technique and time series decomposition for self-correlation analysis. These techniques are the cause of increasing the dimension of data, so it is necessary to supplement them. The anomaly detection field is an old research field, and statistical methods and regression analysis were used in the early days. Currently, there are active studies to apply machine learning and artificial neural network technology to this field. Statistically based methods are difficult to apply when data is non-homogeneous, and do not detect local outliers well. The regression analysis method compares the predictive value and the actual value after learning the regression formula based on the parametric statistics and it detects abnormality. Anomaly detection using regression analysis has the disadvantage that the performance is lowered when the model is not solid and the noise or outliers of the data are included. There is a restriction that learning data with noise or outliers should be used. The autoencoder using artificial neural networks is learned to output as similar as possible to input data. It has many advantages compared to existing probability and linear model, cluster analysis, and map learning. It can be applied to data that does not satisfy probability distribution or linear assumption. In addition, it is possible to learn non-mapping without label data for teaching. However, there is a limitation of local outlier identification of multidimensional data in anomaly detection, and there is a problem that the dimension of data is greatly increased due to the characteristics of time series data. In this study, we propose a CMAE (Conditional Multimodal Autoencoder) that enhances the performance of anomaly detection by considering local outliers and time series characteristics. First, we applied Multimodal Autoencoder (MAE) to improve the limitations of local outlier identification of multidimensional data. Multimodals are commonly used to learn different types of inputs, such as voice and image. The different modal shares the bottleneck effect of Autoencoder and it learns correlation. In addition, CAE (Conditional Autoencoder) was used to learn the characteristics of time series data effectively without increasing the dimension of data. In general, conditional input mainly uses category variables, but in this study, time was used as a condition to learn periodicity. The CMAE model proposed in this paper was verified by comparing with the Unimodal Autoencoder (UAE) and Multi-modal Autoencoder (MAE). The restoration performance of Autoencoder for 41 variables was confirmed in the proposed model and the comparison model. The restoration performance is different by variables, and the restoration is normally well operated because the loss value is small for Memory, Disk, and Network modals in all three Autoencoder models. The process modal did not show a significant difference in all three models, and the CPU modal showed excellent performance in CMAE. ROC curve was prepared for the evaluation of anomaly detection performance in the proposed model and the comparison model, and AUC, accuracy, precision, recall, and F1-score were compared. In all indicators, the performance was shown in the order of CMAE, MAE, and AE. Especially, the reproduction rate was 0.9828 for CMAE, which can be confirmed to detect almost most of the abnormalities. The accuracy of the model was also improved and 87.12%, and the F1-score was 0.8883, which is considered to be suitable for anomaly detection. In practical aspect, the proposed model has an additional advantage in addition to performance improvement. The use of techniques such as time series decomposition and sliding windows has the disadvantage of managing unnecessary procedures; and their dimensional increase can cause a decrease in the computational speed in inference.The proposed model has characteristics that are easy to apply to practical tasks such as inference speed and model management.

Trends in Tongue Color and Heart Rate Variability in Chronic Dyspepsia Patients (만성 소화불량증 환자에서 설 색상과 심박변이도의 경향성 파악)

  • Kim, Ji-hye;Jeong, Chang-jin;Kim, Keun-ho
    • The Journal of Internal Korean Medicine
    • /
    • v.36 no.3
    • /
    • pp.348-360
    • /
    • 2015
  • Objectives From observing the tongue of a patient, one can assess the health status; this method has been frequently used in traditional Korean Medicine (KM) clinics. In particular, KM posits that the color of the tongue is highly related to digestive functions. In this study, the color of tongue and heart rate variability (HRV) were compared between chronic dyspepsia (CD) patients and healthy subjects. Methods Healthy subjects and CD patients with functional dyspepsia (FD), gastroesophageal reflux disease (GERD), or chronic gastritis (CG) were enrolled for the study. Profile view images of the tongue were acquired by using a computerized tongue image acquisition system (CTIS). The color of the tongue body was extracted from the non-coated region on the tongue images. Results Color differences in CIE L*a*b* color space between the three sub-types of CD patients and healthy subjects were analyzed by using multiple linear regression analysis with age and sex as the factors. The variable b* was significantly lower in GERD patients than in the controls (p=0.017). Variable a* was significantly lower in CG than in the controls (p=0.03). No significant difference was seen between FD and controls. In GERD, the tongue body seems to be intense red in color; in CG, pale red. Frequency domain analysis showed that HF was significantly lower in GERD patients than in the controls (p=0.041). Conclusions The color of the tongue body and HF of HRV can be used for diagnosing digestive functions in health care.

Biodegradation Kinetics of Diesel in a Wind-driven Bioventing System

  • Liu, Min-Hsin;Tsai, Cyuan-Fu;Chen, Bo-Yan
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.5
    • /
    • pp.8-15
    • /
    • 2016
  • Bioremediation, which uses microbes to degrade most organic pollutants in soil and groundwater, can be used in solving environmental issues in various polluted sites. In this research, a wind-driven bioventing system is built to degrade about 20,000 mg/kg of high concentration diesel pollutants in soil-pollution mode. The wind-driven bioventing test was proceeded by the bioaugmentation method, and the indigenous microbes used were Bacillus cereus, Achromobacter xylosoxidans, and Pseudomonas putida. The phenomenon of two-stage diesel degradation of different rates was noted in the test. In order to interpret the results of the mode test, three microbes were used to degrade diesel pollutants of same high concentration in separated aerated batch-mixing vessels. The data derived thereof was input into the Haldane equation and calculated by non-linear regression analysis and trial-and-error methods to establish the kinetic parameters of these three microbes in bioventing diesel degradation. The results show that in the derivation of μm (maximum specific growth rate) in biodegradation kinetics parameters, Ks (half-saturation constant) for diesel substance affinity, and Ki (inhibition coefficient) for the adaptability of high concentration diesel degradation. The Ks is the lowest in the trend of the first stage degradation of Bacillus cereus in a high diesel concentration, whereas Ki is the highest, denoting that Bacillus cereus has the best adaptability in a high diesel concentration and is the most efficient in diesel substance affinity. All three microbes have a degradation rate of over 50% with regards to Pristane and Phytane, which are branched alkanes and the most important biological markers.

Age and Growth of Brown Sole, Pleuronectes herzensteini (Jordan et Snyder) in the East Sea of Korea (한국 동해안 참가자미, Pleuronectes herzensteini (Jordan et Snyder)의 연령과 성장)

  • Lee, Sung Il;Park, Kie Young;Kim, Young Seop;Park, Heon Woo;Yang, Jae Hyeong;Choi, Soo Ha
    • Korean Journal of Ichthyology
    • /
    • v.18 no.4
    • /
    • pp.355-362
    • /
    • 2006
  • The age and growth of brown sole, Pleuronectes herzensteini were investigated from samples randomly collected in the East Sea of Korea from April, 2003 to March, 2004. Ages were determined from annuli in otoliths and annuli were formed between March and May once a year. Also, main spawning period were estimated between March and April, thus rings were considered as annual marks. The von Bertalanffy growth parameters estimated from a non-linear regression method were $L_{\infty}=37.2cm$, K=0.131/year, $t_0=-2.008years$ for female and $L_{\infty}=28.3cm$, K=0.177/year, $t_0=-2.135years$ for male, and the growth between female and male was different.

Predictors of Blood and Body Fluid Exposure and Mediating Effects of Infection Prevention Behavior in Shift-Working Nurses: Application of Analysis Method for Zero-Inflated Count Data (교대근무 간호사의 혈액과 체액 노출 사고 예측 요인과 감염예방행위의 매개효과: 영과잉 가산 자료 분석방법을 적용하여)

  • Ryu, Jae Geum;Choi-Kwon, Smi
    • Journal of Korean Academy of Nursing
    • /
    • v.50 no.5
    • /
    • pp.658-670
    • /
    • 2020
  • Purpose: This study aimed to identify the predictors of blood and body fluid exposure (BBFE) in multifaceted individual (sleep disturbance and fatigue), occupational (occupational stress), and organizational (hospital safety climate) factors, as well as infection prevention behavior. We also aimed to test the mediating effect of infection prevention behavior in relation to multifaceted factors and the frequency of BBFE. Methods: This study was based on a secondary data analysis, using data of 246 nurses from the Shift Work Nurses' Health and Turnover study. Based on the characteristics of zero-inflated and over-dispersed count data of frequencies of BBFE, the data were analyzed to calculate zero-inflated negative binomial regression within a generalized linear model and to test the mediating effect using SPSS 25.0, Stata 14.1, and PROCESS macro. Results: We found that the frequency of BBFE increased in subjects with disturbed sleep (IRR = 1.87, p = .049), and the probability of non-BBFE increased in subjects showing higher infection prevention behavior (IRR = 15.05, p = .006) and a hospital safety climate (IRR = 28.46, p = .018). We also found that infection prevention behavior had mediating effects on the occupational stress-BBFE and hospital safety climate-BBFE relationships. Conclusion: Sleep disturbance is an important risk factor related to frequency of BBFE, whereas preventive factors are infection prevention behavior and hospital safety climate. We suggest individual and systemic efforts to improve sleep, occupational stress, and hospital safety climate to prevent BBFE occurrence.

Mixture Proportioning Approach for Low-CO2 Lightweight Aggregate Concrete based on the Replacement Level of Natural Sand (천연모래 치환율에 기반한 저탄소 경량골재 콘크리트 배합설계 모델)

  • Jung, Yeon-Back;Yang, Keun-Hyeok;Tae, Sung-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.4
    • /
    • pp.427-434
    • /
    • 2016
  • The purpose of this study is to propose a mixture proportioning approach based on the replacement level of natural sand for reducing $CO_2$ emissions from artificial lightweight aggregate concrete(LWAC) production. To assess the effect of natural sand on the reduction of $CO_2$ emissions and compressive strength of LWAC, a total of 379 specimens compiled from different sources were analyzed. Based on the non-linear regression analysis using the database and the previous mixture proportioning method proposed by Yang et al., simple equations were derived to determine the concrete mixture proportioning and the replacement level of natural sand for achieving the targeted performances(compressive strength, initial slump, air content, and $CO_2$ reduction ratio) of concrete. Furthermore, the proposed equations are practically applicable to straightforward determination of the $CO_2$ emissions from the provided mixture proportions of LWAC.

A Study on Frame Interpolation and Nonlinear Moving Vector Estimation Using GRNN (GRNN 알고리즘을 이용한 비선형적 움직임 벡터 추정 및 프레임 보간연구)

  • Lee, Seung-Joo;Bang, Min-Suk;Yun, Kee-Bang;Kim, Ki-Doo
    • Journal of IKEEE
    • /
    • v.17 no.4
    • /
    • pp.459-468
    • /
    • 2013
  • Under nonlinear characteristics of frames, we propose the frame interpolation using GRNN to enhance the visual picture quality. By full search with block size of 128x128~1x1 to reduce blocky artifact and image overlay, we select the frame having block of minimum error and re-estimate the nonlinear moving vector using GRNN. We compare our scheme with forward(backward) motion compensation, bidirectional motion compensation when the object movement is large or the object image includes zoom-in and zoom-out or camera focus has changed. Experimental results show that the proposed method provides better performance in subjective image quality compared to conventional MCFI methods.