• Title/Summary/Keyword: Non-uniformity

Search Result 576, Processing Time 0.027 seconds

A Improved Scene based Non-uniformity Correction Algorithm for Infrared Camera

  • Hyun, Ho-Jin;Choi, Byung-In
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.1
    • /
    • pp.67-74
    • /
    • 2018
  • In this paper, we propose an efficient scene based non-uniformity correction algorithm which performs the offset correction using the uniform obtained from input scenes for Infrared camera. In general, pixel outputs of a infrared detector can not be uniform. Therefore, the non-uniformity correction procedure need to be performed to make the image outputs uniform. A typical non-uniformity correction method uses a black body at the laboratory to obtain the output of the infrared detector's pixels for two temperatures, HOT and COLD, and calculates the non-uniformity correction parameters. However, output characteristics of the Infrared detector changes while the Infrared camera is operated, the fixed pattern noise of the Infrared detector and dead pixels are generated. To remove the noise, the offset correction is generally performed. The offset correction procedure usually need the additional device such as a thermo-electric cooler, shutter, or non-uniformity correction lens. Therefore, we introduce a general scene based non-uniformity correction technique without additional equipment, and then we propose an improved non-uniformity correction algorithm based on image to solve the problem of the existing technique.

New Non-uniformity Correction Approach for Infrared Focal Plane Arrays Imaging

  • Qu, Hui-Ming;Gong, Jing-Tan;Huang, Yuan;Chen, Qian
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.213-218
    • /
    • 2013
  • Although infrared focal plane array (IRFPA) detectors have been commonly used, non-uniformity correction (NUC) remains an important problem in the infrared imaging realm. Non-uniformity severely degrades image quality and affects radiometric accuracy in infrared imaging applications. Residual non-uniformity (RNU) significantly affects the detection range of infrared surveillance and reconnaissance systems. More effort should be exerted to improve IRFPA uniformity. A novel NUC method that considers the surrounding temperature variation compensation is proposed based on the binary nonlinear non-uniformity theory model. The implementing procedure is described in detail. This approach simultaneously corrects response nonlinearity and compensates for the influence of surrounding temperature shift. Both qualitative evaluation and quantitative test comparison are performed among several correction technologies. The experimental result shows that the residual non-uniformity, which is corrected by the proposed method, is steady at approximately 0.02 percentage points within the target temperature range of 283 K to 373 K. Real-time imaging shows that the proposed method improves image quality better than traditional techniques.

Removal Rate and Non-Uniformity Characteristics of Oxide CMP (Chemical Mechanical polishing) (산화막 CMP의 연마율 및 비균일도 특성)

  • Jeong, So-Young;Park, Sung-Woo;Park, Chang-Jun;Lee, Kyoung-Jin;Kim, Ki-Wook;Kim, Chul-Bok;Kim, Sang-Yong;Seo, Yong-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.223-227
    • /
    • 2002
  • As the channel length of device shrinks below $0.13{\mu}m$, CMP(chemical mechanical polishing) process got into key process for global planarization in the chip manufacturing process. The removal rate and non-uniformity of the CMP characteristics occupy an important position to CMP process control. Especially, the post-CMP thickness variation depends on the device yield as well as the stability of subsequent process. In this paper, every wafer polished two times for the improvement of oxide CMP process characteristics. Then, we discussed the removal rate and non-uniformity characteristics of post-CMP process. As a result of CMP experiment, we have obtained within-wafer non-uniformity (WIWNU) below 4 [%], and wafer-to-wafer non-uniformity (WTWNU) within 3.5 [%]. It is very good result, because the reliable non-uniformity of CMP process is within 5 [%].

  • PDF

Elapsed-time Method With Tacho Pulse Non-uniformity Correction (타코펄스 불균일성 보정이 포함된 펄스간 시간 측정방법)

  • Son, Jun-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.4
    • /
    • pp.269-275
    • /
    • 2022
  • In ideal configuration, elapsed-time method can measure the exact reaction wheel speed. But in real configuration, the speed measurement error exists due to tacho pulse non-uniformity. In this research, we study the method which overcome the non-uniformity effects. First, we introduce the method which spin the wheel at the specific speed and measure the non-uniformity. Then, we propose the real-time measurement error correction method which uses the obtained non-uniformity information. This method calculate the speed candidates from the elapsed-time method's counts and non-uniformity information, and choose the closest speed to the real speed. Through simulation, we show that proposed method measure the exact speed regardless of non-uniformity, and fast wheel speed control is possible.

Effect of Temperature on Polishing Properties in Oxide CMP (산화막 CMP에서 발생하는 온도가 연마특성에 미치는 영향)

  • Kim, Young-Jin;Park, Boum-Young;Kim, Hyoung-Jae;Jeong, Hae-Do
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.2
    • /
    • pp.93-98
    • /
    • 2008
  • We investigated the effect of process temperature on removal rate and non-uniformity based on single head kinematics in oxide CMP. Generally, it has been known that the temperature profile directly transfers to the non~uniformity of removal rate on the wafer, which has similar tendency with the sliding distance of wafer. Experimental results show that platen velocity is a dominant factor in removal rate as well as average temperature. However, the non-uniformity does not coincide between process temperature and removal rate, due to slurry accumulation and low deviation of temperature. Resultantly, the removal rate is strongly dependent on the rotational speed of platen, and its non -uniformity is controlled by the rotational speed of polishing head. It means lower WIWNU (With-in-wafer-non-uniformity) can be achieved in the region of higher head speed.

Proposal and Verification of Image Sensor Non-uniformity Correction Algorithm (영상센서 픽셀 불균일 보정 알고리즘 개발 및 시험)

  • Kim, Young-Sun;Kong, Jong-Pil;Heo, Haeng-Pal;Park, Jong-Euk
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.3
    • /
    • pp.29-33
    • /
    • 2007
  • All pixels of image sensor do not react uniformly even if the light of same radiance enters into the camera. This non-uniformity comes from the sensor pixel non-uniformity and non-uniformity induced by the changing transmission of the telescope over the field. The first contribution to the non-uniformity has high spatial frequency nature and has an influence on the result and quality of the data compression. The second source of non-uniformity has low frequency nature and has no influence of the compression result. As the contribution resulting from the sensor PRNU(Photo Response Non-Uniformity) is corrected inside the camera electronics, the effect of the remaining non-uniformity to the compression result will be negligible. The non-uniformity correction result shall have big difference according to the sensor modeling and the calculation method to get correction coefficient. Usually, the sensor can be modeled with one dimensional coefficients which are a gain and a offset for each pixel. Only two measurements are necessary theoretically to get coefficients. However, these are not the optimized value over the whole illumination level. This paper proposes the algorithm to calculate the optimized non-uniformity correction coefficients over whole illumination radiance. The proposed algorithm uses several measurements and the least square method to get the optimum coefficients. The proposed algorithm is verified using the own camera electronics including sensor, electrical test equipment and optical test equipment such as the integrating sphere.

CCD Signal Processing for Optimal Non-Uniformity Correction

  • Kong, Jong-Pil;Lee, Song-Jae
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.6
    • /
    • pp.645-652
    • /
    • 2010
  • The performance of the payload Electro-Optical System (EOS) in satellite system is affected by various factors, such as optics design, camera electronics design, and the characteristics of the CCD (Charge Coupled Device) used, etc. Of these factors, the camera electronics design is somewhat unique in that its operational parameters can be adjusted even after the satellite launch. In this paper, the effect of video gain on the non-uniformity correction performance is addressed. And a new optimal non-uniformity correction scheme is proposed and analyzed using the data from real camera electronics unit based on a TDI (Time Delayed Integration) type of CCD. The test results show that the performance of the conventional non-uniformity correction scheme is affected significantly when the video gain is added. On the other hand, in our proposed scheme, the performance is not dependent on the video gain. The insensitivity of the non-uniformity performance on the video-gain is mainly due to the fact that the correction is performed after the dark signal is subtracted from system response.

Error Analysis of Reaction Wheel Speed Detection Methods Due to Non-uniformity of Tacho Pulse Duration (타코 펄스 불균일성이 존재하는 반작용휠의 속도측정 방법 오차 분석)

  • Oh, Shi-Hwan;Yong, Ki-Lyuk
    • Aerospace Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.92-97
    • /
    • 2009
  • Two conventional speed detection methods (Elapsed-time method and Pulse-count method) are analyzed and compared for a high speed motor with digital tacho pulse with non-uniformity. In general, the elapsed-time method usually has better performance than a pulse-count method in case sufficiently high speed clock is used to measure the time difference. But if a tacho pulse non-uniformity exists in the reaction wheel - most of reaction wheel has a certain amount of non-uniformity - the accuracy of the elapsed-time method is degraded significantly. Thus the performance degradation is analyzed with respect to the level of non-uniformity of tacho pulse distribution and an allowable bound is suggested.

  • PDF

Effect of Pad Surface Characteristics on Within Wafer Non-uniformity in CMP (연마불균일도에 영향을 미치는 패드 표면특성에 관한 연구)

  • Park, Ki-Hyun;Park, Boum-Young;Kim, Hyoung-Jae;Jeong, Hae-Do
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.4
    • /
    • pp.309-313
    • /
    • 2006
  • Pad surface characteristics such as roughness, groove and wear rate of pad have a effect on the within wafer non-uniformity(WIWNU) in chemical mechanical polishing(CMP). Although WIWNU increases as the uniformity of roughness(Rpk: Reduced peak height) becomes worse in an early stage of polishing time, WIWNU decreases as non-uniformity of the Rpk value. Also, WIWNU decreases with the reduction of the pad stiffness, though original mechanical properties of pad are unchanged by the grooving process. In addition, conditioning process causes the inequality of pad wear during in CMP. The profile of pad wear generated by the conditioning process has a significant effect on the WIWNU. These experiments results could help to understand the effect of pad surface characteristics in CMP.