• Title/Summary/Keyword: Non-volatile

Search Result 768, Processing Time 0.032 seconds

Design Space Exploration of EEPROM-SRAM Hybrid Non-volatile Counter Considering Energy Consumption and Memory Endurance (에너지 소비 및 메모리 내구성을 고려한 EEPROM-SRAM 하이브리드 비휘발성 카운터의 설계 공간 탐색)

  • Shin, Donghwa
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.4
    • /
    • pp.201-208
    • /
    • 2016
  • Non-volatile counter is a counter that maintains the value without external power supply. It has been used for the applications related to warranty issues to count and record certain events such as power cycles, operating time, hard resets, and timeouts. It has been conventionally implemented with volatile memory-based counter and battery backup or non-volatile memory such as EEPROM. Both of them have a lifetime issue due to the limited lifetime of the battery and the endurance of the non-volatile memory cells, which incurs significant redundancy in design. In this paper, we introduce a hybrid architecture of volatile (SRAM) and non-volatile memory (EEPROM) cells to achieve required lifetime of the non-volatile counter with smaller cost. We conduct a design space exploration of the proposed hybrid architecture with the parameters of various kinds of non-volatile memories. The analysis result shows that the proposed hybrid non-volatile counter can extend the lifetime up to 6 times compared to the battery-backup volatile memory-based implementation.

A Non-volatile Memory Lifetime Extension Scheme Based on the AUTOSAR Platform using Complex Device Driver (AUTOSAR 플랫폼 기반 CDD를 활용한 비휘발성 메모리 수명 연장 기법)

  • Shin, Ju-Seok;Son, Jeong-Ho;Lee, Eun-Ryung;Oh, Se-Jin;Ahn, Kwang-Seon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.5
    • /
    • pp.235-242
    • /
    • 2013
  • Recently, the number of automotive electrical and electronic system has been increased because the requirements for the convenience and safety of the drivers and passengers are raised. In most cases, the data for controlling the various sensors and automotive electrical and electronic system used in runtime should be stored on the internal or external non-volatile memory of the ECU(Electronic Control Units). However, the non-volatile memory has a constraint with write limitation due to the hardware characteristics. The limitation causes fatal accidents or unexpected results if the non-volatile memory is not managed. In this paper, we propose a management scheme for using non-volatile memory to prolong the writing times based on AUTOSAR(AUTOmotive Open System Architecture) platform. Our proposal is implemented on the CDD(Complex Device Driver) and uses an algorithm which swaps a frequently modified block for a least modified block. Through the development of the prototype, the proposed scheme extends the lifetime of non-volatile memory about 1.08 to 2.48 times than simply using the AUTOSAR standard.

An Reliable Non-Volatile Memory using Alloy Nano-Dots Layer with Extremely High Density

  • Lee, Gae-Hun;Kil, Gyu-Hyun;An, Ho-Joong;Song, Yun-Heup
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.241-241
    • /
    • 2010
  • New non-volatile memory with high density and high work-function metal nano-dots, MND (Metal Nano-Dot) memory, was proposed and fundamental characteristics of MND capacitor were evaluated. In this work, nano-dot layer of FePt with high density and high work-function (~5.2eV) was fabricated as a charge storage site in non-volatile memory, and its electrical characteristics were evaluated for the possibility of non-volatile memory in view of cell operation by Fowler-Nordheim (FN)-tunneling. Here, nano-dot FePt layer was controlled as a uniform single layer with dot size of under ~ 2nm and dot density of ${\sim}\;1.2{\times}10^{13}/cm^2$. Electrical measurements of MOS structure with FePt nano-dot layer shows threshold voltage window of ~ 6V using FN programming and erasing, which is satisfied with operation of the non-volatile memory. Furthermore, this structure provides better data retention characteristics compared to other metal dot materials with the similar dot density in our experiments. From these results, it is expected that this non-volatile memory using FePt nano-dot layer with high dot density and high work-function can be one of candidate structures for the future non-volatile memory.

  • PDF

Preparation and Characteristics of a Matrix Retaining Electrolyte for a Phosphoric Acid Fuel Cell Using Non-volatile Solvent, NMP (비휘발성 용매(NMP)를 사용한 인산형 연료전지(PAFC)용 전해질 매트릭스 제조 및 특성)

  • 윤기현;양병덕
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.1
    • /
    • pp.26-32
    • /
    • 2000
  • Preparation and characteristics of a matrix retaining electrolyte using SiC whisker, PES binder, and NMP(n-methyl-2-pyrrolidone) as a non-volatile solvent for a phosphoric acid fuel cell were investigated. The conditions of binder and plasticizer, and the effects of substituting a volatile solvent by a non-volatile solvent were also studied. The minimum amount of the binder was about 17 wt% for the proper bubble pressure and surrounding SiC whiskers. And the maximum amount of the plasticizer was about 10wt% to be fitted into the polymer chain of the binder. The matrix prepared by using a non-volatile solvent needed longer time to dry, and its pore size was smaller compared with that of the matrix prepared by using volatile solvent. The small pore size resulted in decrease of the overall pore volume. The ionic conductivity in the condition of the same thickness was decreased due to decrease of phosphoric acid absorbancy. As the internal resistance of the electrolyte increased, the fuel cell performance slightly decreased.

  • PDF

Performance and Energy Optimization for Low-Write Performance Non-volatile Main Memory Systems (낮은 쓰기 성능을 갖는 비휘발성 메인 메모리 시스템을 위한 성능 및 에너지 최적화 기법)

  • Jung, Woo-Soon;Lee, Hyung-Gyu
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.5
    • /
    • pp.245-252
    • /
    • 2018
  • Non-volatile RAM devices have been increasingly viewed as an alternative of DRAM main memory system. However some technologies including phase-change memory (PCM) are still suffering from relatively poor write performance as well as limited endurance. In this paper, we introduce a proactive last-level cache management to efficiently hide a low write performance of non-volatile main memory systems. The proposed method significantly reduces the cache miss penalty by proactively evicting the part of cachelines when the non-volatile main memory system is in idle state. Our trace-driven simulation demonstrates 24% performance enhancement, compared with a conventional LRU cache management, on the average.

The Changes of Non-Volatile Organic Acids in Low Salt Fermented Squid Affected by Adding to Squid Ink (오징어 먹즙 첨가에 따른 저염 오징어 젓갈의 비휘발성 유기산 변화)

  • Oh, Sung-Cheon;Cho, Jung-Soon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.64-71
    • /
    • 2003
  • Squid ink was added to the low salt fermented squid by 4% of concentration and ripened at 10$^{\cric}C$ for 6 weeks and at 20$^{\cric}C$ for 28 days. The effect of the squid ink on the non-volatile organic acids of low salt fermented squid were investigated. The results are as follows; The non-volatile organic acid in the salt fermented squid without addition of the squid ink was examined and the result showed that lactic and acetic acids were the major organic acids even if very small amount of citric and oxalic acids were detected. In the squid ink added to the low salt fermented squid, total quantity of non-volatile organic acid in the latter part of the ripening was lower than no treatment groups.

Design of Asynchronous Nonvolatile Memory Module using Self-diagnosis Function (자기진단 기능을 이용한 비동기용 불휘발성 메모리 모듈의 설계)

  • Shin, Woohyeon;Yang, Oh;Yeon, Jun Sang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.85-90
    • /
    • 2022
  • In this paper, an asynchronous nonvolatile memory module using a self-diagnosis function was designed. For the system to work, a lot of data must be input/output, and memory that can be stored is required. The volatile memory is fast, but data is erased without power, and the nonvolatile memory is slow, but data can be stored semi-permanently without power. The non-volatile static random-access memory is designed to solve these memory problems. However, the non-volatile static random-access memory is weak external noise or electrical shock, data can be some error. To solve these data errors, self-diagnosis algorithms were applied to non-volatile static random-access memory using error correction code, cyclic redundancy check 32 and data check sum to increase the reliability and accuracy of data retention. In addition, the possibility of application to an asynchronous non-volatile storage system requiring reliability was suggested.

Comparison of Volatile Aroma Components and Non-volatile Organic Acids in Tobacco Lamina and Stems. (잎담배 엽육과 주맥의 휘발성 정유성분 및 비휘발성 유기산의 비교)

  • 김영회;박준영;양광규;김옥찬
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.8 no.2
    • /
    • pp.51-66
    • /
    • 1986
  • Volatile aroma components, non-volatile organic acids in lamina and stems of flue-cured(NC 2326) and burley ( Burley 21) were analyzed by gas chromatography and mass spectrometry, respectively. Then compositional differences of these components between lamina and stems were discussed. The contents of volatile components were higher in flue-cured than in burley tobacco, and it was also higher in lamina then in stem. The major aroma components in lamina were neophytadiene , nicotine, solanone and benzyl alcohol but those in stems were palmitic acid, neophytadiene, nicotine, solanone and phenyl ethyl acetate. On the other hand, the contents of non-volatile organic acids were higher in burley than in flue-cured tobacco, and these values of burley tobacco were higher in lamina than in stem but flue-cured tobacco were higher in stem than in lamina. The major acids in all the above four tabacco samples were malic, citric, oxalic and linolenic acid.

  • PDF

Garbage Collection Technique for Non-volatile Memory by Using Tree Data Structure (트리 자료구조를 이용한 비 휘발성 메모리의 가비지 수집 기법)

  • Lee, Dokeun;Won, Youjip
    • Journal of KIISE
    • /
    • v.43 no.2
    • /
    • pp.152-162
    • /
    • 2016
  • Most traditional garbage collectors commonly use the language level metadata, which is designed for pointer type searching. However, because it is difficult to use this metadata in non-volatile memory allocation platforms, a new garbage collection technique is essential for non-volatile memory utilization. In this paper, we design new metadata for managing information regarding non-volatile memory allocation called "Allocation Tree". This metadata is comprised of tree data structure for fast information lookup and a node that holds an allocation address and an object ID pair in key-value form. The Garbage Collector starts collecting when there are insufficient non-volatile memory spaces, and it compares user data and the allocation tree for garbage detection. We develop this algorithm in a persistent heap based non-volatile memory allocation platform called "HEAPO" for demonstration.

Effect of Temperature on the Production of Free Organic Acids during Kimchi Fermentation

  • Park, Young-Sik;Ko, Chang-Young;Ha, Duk-Mo
    • Journal of Microbiology and Biotechnology
    • /
    • v.3 no.4
    • /
    • pp.266-269
    • /
    • 1993
  • The production of free non-volatile and volatile organic acids in Kimchi during fermentations at 30, 20 and $5^{\circ}C$, were determined by gas chromatography. The order in the amount of non-volatile organic acid, soon after preparation, was malic, citric, tartaric, pyroglutamic, oxalic, lactic, succinic and ${\alpha}-ketoglutaric$ acids. The major non-volatile acids at the optimum ripening time were malic, tartaric, citric and lactic acids, and as the temperature was lowered, the amount of lactic, succinic, oxalic, pyroglutamic and fumaric acids increased, while that of malic and tartaric acids decreased. The order in the amount of volatile acids at the beginning was acetic, butyric, propionic and formic acids. Among these acids, acetic acid was significantly increased in its amount during fermentation and the Kimchi fermented at low temperature produced more acetic acid than that fermented at high temperature.

  • PDF