• Title, Summary, Keyword: Non-woven tissue

Search Result 18, Processing Time 0.048 seconds

Effects of Non-Woven Tissue on the Mechanical Behavior of Angle-Ply Laminates (부직포가 예각 적층판의 기계적 거동에 미치는 효과)

  • 정성균
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.6
    • /
    • pp.109-115
    • /
    • 2001
  • This paper investigates the mechanical characteristics of angle-ply laminates with non-woven carbon tissue. The lami- nates were made by inserting non-woven carbon tissue at the interface. Specimens were rounded near the tabs by grinding and polishing to reduce the stress concentration. Cyclic loads were applied to the specimens and the stress and fatigue life curves were obtained. The matrix crack density was also evaluated to check the effects of non-woven carbon tissue on the fracture resistance of composite laminates. C-Sean technique was used to evaluate the delamination, and SEM was used to understand the fracture mechanisms of the laminates. Experimental results show that the fatigue strength and life of composite laminates were increased by inserting non- woven carbon tissues. The results also show that the matrix crack density and delamination area were reduced by inserting non-woven carbon tissues.

  • PDF

Effect of non-woven tissues on interlaminar fracture toughness of composite laminate (부직포가 복합적층판의 층간파괴인성에 미치는 효과)

  • 김영배;정성균;강진식;김태형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • /
    • pp.110-114
    • /
    • 2000
  • The Interlaminar fracture behavior of hybrid composite with non-woven carbon tissue was investigated under Mode I (DCB) and Mode II (ENF) loading condition. Hybrid composites were manufactured by means of inserting a non-woven tissue between prepreg layers. Two kinds of specimens were prepared from [0]$_{24}$ and [$0_{12}/0_{12}$]. Where, the symbol "/" means that a non-woven carbon tissue was located at 0/0 mid-plane of the specimen. The interlaminar fracture toughness of hybrid composites was compared with that of CFRP. The fracture surfaces of the specimens were observed using optical microscope and SEM, and the failure mechanism was discussed. The hybrid laminates, which are made by inserting non-woven carbon tissue between layers, were shown to be effective to remarkably improve Mode II fracture toughness.toughness.

  • PDF

Interlaminar Fracture Toughness of Hybrid Composites Inserted with Different Kinds of Non-Woven Tissues : Part I-Mode I (종류가 다른 부직포가 삽입된 하이브리드 복합재료의 층간파괴인성 : Part I-Mode I)

  • Jeong, Jong-Seol;Cheong, Seong-Kyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.4
    • /
    • pp.497-502
    • /
    • 2013
  • In this study, the interlaminar fracture toughness in mode I of a hybrid composite inserted with different types of non-woven tissues was determined. The interlaminar fracture toughness in mode I is obtained by a double cantilever beam test. The experiment is performed using three types of non-woven tissues: 8 $g/m^2$ of carbon tissue, 10 $g/m^2$ of glass tissue, and 8 $g/m^2$ of polyester tissue. Considering a specimen with no non-woven tissue as a reference, the interlaminar fracture toughness in mode I of specimens inserted with non-woven carbon and glass tissues decreases by as much as 6.3% and 11.4%, respectively. However, the fracture toughness of a hybrid composite specimen inserted with non-woven polyester tissue increases by as much as 69.4%. It is considered that the specimen inserted with non-woven polyester tissue becomes cheaper, and lighter, and the value of the fracture toughness becomes much greater than that of the non-woven carbon tissue.

Mode II Interlaminar Fracture Toughness of Hybrid Composites Inserted with Different Types of Non-woven Tissues (종류가 다른 부직포가 삽입된 하이브리드 복합재료의 모드 II 층간파괴인성)

  • Jeong, Jong-Seol;Cheong, Seong-Kyun
    • Composites Research
    • /
    • v.26 no.2
    • /
    • pp.141-145
    • /
    • 2013
  • The mode II interlaminar fracture toughness was evaluated for CFRP laminates with different types of nonwoven tissues and the source of increased mode II interlaminar fracture toughness was examined by SEM analysis in this paper. The interlaminar fracture toughness in mode II is obtained by an end notched flexure test. The experiment is performed using three types of non-woven tissues: 8 $g/m^2$ of carbon tissue, 10 $g/m^2$ of glass tissue, and 8 $g/m^2$ of polyester tissue. On the basis of the specimen with no non-woven tissue, interlaminar fracture toughness on mode II at specimens inserted with non-woven carbon and glass tissues and polyester tissues increases as much as 166.5% and 137.1% and 157.4% respectively. The results show that mode II interlaminar fracture toughness of CFRP laminates inserted with nonwoven tissues increased due to the fiber bridging, fiber breakage, and hackle etc. by SEM analysis.

Effects of Prevention on the Cow Mastitis Based on Functional Non-woven Finishing Products (기능성 부직포 후가공 제품에 의한 젖소 유방염 예방효과)

  • Hong, Young-Ki;Lee, Mun-Soo
    • Textile Coloration and Finishing
    • /
    • v.18 no.6
    • /
    • pp.57-62
    • /
    • 2006
  • The functional non-woven fabrics have been applied in various industry fields, such as clothing, hygiene, environment, medical and so forth. The functional non-woven fabrics for wet tissue were manufactured by meltblown and wet tissue finishing processes. The wet tissue was contained the various composition substances such as Benzalkonium Chloride(0.2292g), lodo-2-propynyl Butyl carbamate(0.0069g) and 5-Chloro-2-Methyl-Isothiazolin -3-one, 2-Methyl-Isothiazolin-3-one (0.0034g) with purified water (999.76g). In this study, the functional wet tissue based on meltblown nonwovens has been applied in dairy cattle for prevention on cow mastitis. Mastitis is the most costly disease results in lost milk production, decreased milk quality, milk discard, early culling of cows, drug costs and labor costs in dairy cattle. Therefore, this study was investigated to evaluate clinical effect of the functional wet tissue in mastitis control. The results, after experiment the functional wet tissue used group, demonstrated that the infection rate, cure rate and mean somatic cell count(SCC) were significantly decreased as compared to the control group.

A Study on the Development of the Next Generation Composite Materials(Hybrid Composites with Non-Woven Tissue) (차세대 복합재료의 개발에 관한 연구(부직포 삽입형 하이브리드 복합재료))

  • ;Hiroshi Noguchi
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • /
    • pp.195-198
    • /
    • 2001
  • To improve the properties of FRP composite materials, the hybrid prepreg with non-woven tissue (NWT) is developed. The hybrid prepreg consists of undirectional prepreg and NWT prepreg. The NWT prepreg is made by compounding the NWT and polymer resin, which is similar to the production method of FRP prepreg. The NWT has short fibers which are discretely distributed with in-plane random orientation. The stiffness and strength of NWT composites are lower than those of continuously fibrous composites. The strengthening technique and fabricating technique for the hybrid prepreg are described in this work. The mechanical characteristics of hybrid composites with NWT are discussed and compared with those of the FRP composites.

  • PDF

Influence of covering treatment on the incidence of frost injury in chinese cabbage during winter season (피복처리가 월동배추 동해 발생에 미치는 영향)

  • Lee, Sang Gyu;Choi, Chang Sun;Lee, Hee Ju;Jang, Yoon Ah;Do, Kyung Ran
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.3
    • /
    • pp.163-167
    • /
    • 2014
  • The average temperatures for year and winter season have been risen by $0.7{\circ}C$ and $1.4{\circ}C$, respectively, during the last 30 years. Recently abnormal climate phenomena occurred frequently results in severe loss of vegetable crops grown in Korea. Specially, Chinese cabbages grown in the southern area of Korea are often significantly affected by sudden cold waves during winter season before harvest. This experiment was conducted to find out a potential role of covering materials on the protection of frost damage of 'Bularm' chinese cabbage in the winter season. The lowest temperature was $-15.8^{\circ}C$ in non-covering, $-8.1^{\circ}C$ in the PE film covering and $-4.6^{\circ}C$ in the non-woven fabric covering with PE film, respectively. The cumulative times below $4.0^{\circ}C$ were 145.5 hours for the non-covering treatment, 94 hours in the PE film covering and 14.5 hours in the non-woven fabric covering with PE film, respectively. The symptoms of frost damage were severe at non-covering chinese cabbages compared to polyethylene film (PE) non-woven fabric with PE covering ones. Microscopic studies showed the normal anatomical structure of palisade and spongy tissue of cabbage leaves covered with non-woven fabric with PE film. Leaf cells, however, were slightly damaged in cabbages covered with PE film alone, and both palisade and spongy cells were were completely collapsed in uncovered cabbages. The result of this study suggests that chinese cabbages is required to be covered with non-woven fabric with PE film to minimize the frost damage by sudden cold wave below $-7^{\circ}C$.

Preparation and Evaluation of Cosmetic Tissue using W/Si/W Multiple Emulsion (실리콘 다중유제 (W/Si/W)를 이용한 화장용 티슈의 개발 및 평가)

  • Han, Sang-Chul;Park, Duck-Sang;Shin, Jae-Hong;Kim, Tae-Hyeon;Park, Jeong-Sook;Cho, Cheong-Weon;Hwang, Sung-Joo
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.4
    • /
    • pp.217-222
    • /
    • 2007
  • To develop cleansing tissue composed of silicone multiple emulsions which could easily remove make-up residues and confer skin protecting effect without damaging skin, we formulated various silicone multiple emulsions and evaluated the physicochemical properties including viscosity, cleansing effect, and safety effect. Also, cleansing tissue incorporated with silicone multiple (W/Si/W) emulsion was stored for 6 months, and judged its stability through microscopes under accelerated and long-term condition. Cleansing effect was evaluated by chromameter. Skin hydration effect was determined by corneometer and incorporation effect into non-woven fabric cotton was evaluated by volunteer survey. Low viscosity ranged from 400 centipoise (cP) to 1,000 cP was obtained from a stabilized W/Si/W emulsion containing more than 10% volatile silicone. Mean diameter of fresh W/Si/W emulsion was $20{\mu}m$, but after storage for 3 months at $45^{\circ}C$, the particle size of the W/Si/W emulsion increased up to $50{\mu}m$. Both W/Si/W emulsion-incorporated cleansing tissue and commercial product showed equally good cleansing effect. In addition, skin allergies such as erythema, edema, scaling itching, stinging, burning, tightness and prickling were not observed through macroscopic examination. From the transepidermal water loss results, the cleansing tissue consisting of W/Si/W emulsion showed superior hydration effect to commercial product. In conclusion, this study suggests cleansing tissue using W/Si/W emulsion could be used for an excellent efficacy compared with commercialized cleansing tissue.

Analysis of Shear Characteristics of Angle-Ply Laminates with Non-woven Tissue by FEM (FEM에 의한 부직포 삽입 예각 적층판의 전단특성 해석)

  • 이승환;정성균
    • Korean Journal of Crystallography
    • /
    • v.13 no.2
    • /
    • pp.69-72
    • /
    • 2002
  • The interlaminar problems near the free edge of composite laminates are analyzed in this paper. CFRP specimen ([+40/-40]s) and interleaved specimen ([+40//-40]s) with non-woven carbon tissue (NWCT) are discussed under tensile loading condition. The symbol “//”means that the NWCT is located between the CFRP interfaces. The NWCT has carbon short fibers which are discretely distributed with the in-plane random orientation. It was reported/sup 3)/ that the Mode Ⅱ interlaminar fracture toughness of CFRP laminates with NWCT is increased largely and the Mode I interlaminar fracture toughness is not changed significantly. Mode Ⅲ interlaminar fracture toughness is also an important factor in composite structures. But it is not easy to experimentally investigate the Mode Ⅲ interlaminar fracture toughness. The objective of this work is to study the effect of the NWCT and to fundamentally understand the Mode Ⅲ interlaminar shear characteristics of laminated composites with NWCT in the vicinity of a free edge by using finite element method analysis.