• Title/Summary/Keyword: Nonhomogeneous pile

Search Result 7, Processing Time 0.021 seconds

Parametric Study on Determining Upper Length of Nonhomogeneous Pile installed in Clay (점토지반에 설치된 불균질말뚝의 상부길이 결정을 위한 매개변수 연구)

  • Lee, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2505-2510
    • /
    • 2013
  • Parametric studies on nonhomogeneous pile and homogeneous pile installed in clay were performed through the developed technique to investigate the effects of considered factors on the lateral pile behaviors. Values of the parameters with embedment depths of the two piles having different flexural rigidity show that values of the parameters for more rigid pile were greater than those for smaller one. Parameters for the case of the nonhomogeneous pile were converged to the same ones of the homogeneous pile as nodal point moves away from point of material boundary. In order to determine adequate upper length of the nonhomogeneous pile, changing patterns of the parameters, lateral displacement, member forces and so forth should be compared.

Stability charts and reinforcement with piles in 3D nonhomogeneous and anisotropic soil slope

  • Xu, Jingshu;Li, Yongxin;Yang, Xiaoli
    • Geomechanics and Engineering
    • /
    • v.14 no.1
    • /
    • pp.71-81
    • /
    • 2018
  • Soils are mostly nonhomogeneous and anisotropic in nature. In this study, nonhomogeneity and anisotropy of soil are taken into consideration by assuming that the cohesion increases with depth linearly and also varies with respect to direction at a particular point. A three-dimensional rotational failure mechanism is adopted, and then a three-dimensional stability analysis of slope is carried out with the failure surface in the shape of a curvilinear cone in virtue of the limit analysis method. A quasistatic approach is used to develop stability charts in nonhomogeneous and anisotropic soils. One can easily read the safety factors from the charts without the need for iterative procedures for safety factors calculation. The charts are of practical importance to prevent a plane failure in excavation slope whether it is physically constrained or not. Then the most suitable location of piles within the reinforced slope in nonhomogeneous and anisotropic soils is explored, as well as the interactions of nonhomogeneous and anisotropic coefficients on pile reinforcement effects. The results indicate that piles are more effective when they are located between the middle and the crest of the slope, and the nonhomogeneous coefficient as well as the anisotropic coefficient will not only influence the most suitable location for piles but also affect the calculated safety factor of existing reinforced slope. In addition, the two coefficients will interact with each other on the effect on slope reinforcement.

Inelastic transient analysis of piles in nonhomogeneous soil

  • Kucukarslan, S.;Banerjee, P.K.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.5
    • /
    • pp.545-556
    • /
    • 2007
  • In this paper, a hybrid boundary element technique is implemented to analyze nonlinear transient pile soil interaction in Gibson type nonhomeogenous soil. Inelastic modeling of soil media is presented by introducing a rational approximation to the continuum with nonlinear interface springs along the piles. Modified $\ddot{O}$zdemir's nonlinear model is implemented and systems of equations are coupled at interfaces for piles and pile groups. Linear beam column finite elements are used to model the piles and the resulting governing equations are solved using an implicit integration scheme. By enforcing displacement equilibrium conditions at each time step, a system of equations is generated which yields the solution. A numerical example is performed to investigate the effects of nonlinearity on the pile soil interaction.

Effect of Pile Head Constraint on Lateral Behavior of Single Rigid Pile in Two-Layered Sand Soil (2개층 사질토지반에서 단일 강성말뚝의 수평거동에 대한 두부 구속영향)

  • 김영수;서인식;김병탁;이상웅
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.217-224
    • /
    • 1999
  • This Paper shows the results of a series of model tests on the behavior of single rigid Pile, which subjected to lateral load, in non-homogeneous Nak-Dong River sands, consisted of two layers, upper and lower layers. The purpose of the present paper is to investigate the effect of ratio of lower layer thickness to embedded pile length ratio of soil modules of upper to lower layer (E$\sub$h1//E$\sub$h2/) and pile head constraint condition on the characteristics of lateral behavior of single pile. These effects can be quantified only by the results of model tests. As a model test result, in non-homogeneous sand, it shows that the lateral behavior depends upon the ratio of soil modules of upper to lower layer more than other factors. And, in respect of deflection, it was found that the reduction ratio of deflection by pile head fixity is the value of 0.5 and 0.6 for E$\sub$h1//E$\sub$h2/=0.18 and E$\sub$h1//E$\sub$h2/=5.56, respectively. The critical thickness of lower layer on the change of deflection is about 25 - 50% of pile embedded length. Also, in respect of maximum bending moment it was found that the reduction ratio of maximum bending moment by pile head fixity is the value of 0.55 and 0.7 for E$\sub$h1//E$\sub$h2/=0.18 and E$\sub$h1//E$\sub$h2/=5.56, respectively.

  • PDF

Buckling Loads of Piles with Allowance for Self-Weight (자중효과를 고려한 말뚝의 좌굴하중)

  • Lee, Joon-Kyu;Lee, Kwang-Woo;Jeon, Young-Jin;Kwon, O-Il;Choi, Yong-Hyuk;Choi, Jeong-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.187-193
    • /
    • 2023
  • This paper presents the buckling behavior of a pile considering its self-weight. The differential equation and boundary conditions governing the buckling of partially embedded piles in nonhomogeneous soils are derived. The buckling load and mode shape of the pile are numerically computed by the Runge-Kutta method combined with the Regula-Falsi algorithm. The obtained numerical solutions for bucking loads agree well with the results available from the literature. Numerical examples are given to analyze the buckling load and mode shape of the piles as affected by the self-weight, embedment ratio, slenderness ratio and boundary condition of the pile as well as the aspect ratio and rigidity ratio of the subgrade reaction. It is found that the self-weight of the pile leads to the reduction of the buckling load, indicating that neglecting the effect of self-weight may overestimate the buckling load of partially embedded piles.

Model Tests on the Characteristics of Lateral Behavior of Steel Pipe Pile in Homogeneous and Nonhomogeneous Soil Conditions (균질 지반과 비균질 지반에서 강관 모형말뚝의 수평거동 특성에 관한 모형실험)

  • 김병탁;김영수
    • Geotechnical Engineering
    • /
    • v.14 no.6
    • /
    • pp.153-166
    • /
    • 1998
  • This paper shows the results of a series of model tests on the behavior of steel pipe pile which is subjected to lateral and inclined loads in homogeneous and non-homogeneous Nak-dong River sands. Non-homogeneous soil consisted of two layers, upper and lower layer. The purpose of the present paper is to investigate the effect of ratio of lower layer height to embedded pile length, ratio of soil modules of upper layer to lower layer and inclined load on the behavior of single pile. These effects can be quantified only by the results of model tests. As a result. in non-homogeneous sand soil, it is shown that the lateral behavior depends upon the ratio of soil modules of upper layer to lower layer more than other factors. And it was found that the relationship between the deflection ratio of non-homogeneous sand to homogeneous sand and the ratio of lower layer height to embedded pile length can be fitted to exponential function of H/L by model tests results. For the inclined load applied, it is shown that the bending moment-depth relationship is not similar to the case of laterally loaded pile and the depth of maximum bending moment at relative density of 90% increases about 70% more than the pile only loaded laterally.

  • PDF

Static impedance functions for monopiles supporting offshore wind turbines in nonhomogeneous soils-emphasis on soil/monopile interface characteristics

  • Abed, Younes;Bouzid, Djillali Amar;Bhattacharya, Subhamoy;Aissa, Mohammed H.
    • Earthquakes and Structures
    • /
    • v.10 no.5
    • /
    • pp.1143-1179
    • /
    • 2016
  • Offshore wind turbines are considered as a fundamental part to develop substantial, alternative energy sources. In this highly flexible structures, monopiles are usually used as support foundations. Since the monopiles are large diameter (3.5 to 7 m) deep foundations, they result in extremely stiff short monopiles where the slenderness (length to diameter) may range between 5 and 10. Consequently, their elastic deformation patterns under lateral loading differ from those of small diameter monopiles usually employed for supporting structures in offshore oil and gas industry. For this reason, design recommendations (API and DNV) are not appropriate for designing foundations for offshore wind turbine structures as they have been established on the basis of full-scale load tests on long, slender and flexible piles. Furthermore, as these facilities are very sensitive to rotations and dynamic changes in the soil-pile system, the accurate prediction of monopile head displacement and rotation constitutes a design criterion of paramount importance. In this paper, the Fourier Series Aided Finite Element Method (FSAFEM) is employed for the determination of static impedance functions of monopiles for OWT subjected to horizontal force and/or to an overturning moment, where a non-homogeneous soil profile has been considered. On the basis of an extensive parametric study, and in order to address the problem of head stiffness of short monopiles, approximate analytical formulae are obtained for lateral stiffness $K_L$, rotational stiffness $K_R$ and cross coupling stiffness $K_{LR}$ for both rough and smooth interfaces. Theses expressions which depend only on the values of the monopile slenderness $L/D_p$ rather than the relative soil/monopile rigidity $E_p/E_s$ usually found in the offshore platforms designing codes (DNV code for example) have been incorporated in the expressions of the OWT natural frequency of four wind farm sites. Excellent agreement has been found between the computed and the measured natural frequencies.