• Title/Summary/Keyword: Nonlinear Disturbance Observer

Search Result 127, Processing Time 0.034 seconds

Disturbance Observer based PID Controller for robustness enhancement of UAVs under the presence of wind disturbance (무인항공기의 내풍성 강화를 위한 제어기의 외란관측기 연구)

  • Oh, Seungjo;Lee, Dongjin
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.26 no.2
    • /
    • pp.61-67
    • /
    • 2018
  • This paper presents a method to apply disturbance observer to PID controller for robustness enhancement of UAVs. The system uncertainties and disturbances bring adverse effects on performance and stability of UAVs. In this paper, we estimate the acceleration disturbances using nonlinear disturbance observer, then compensate disturbances with composite controller. By employing nonlinear disturbance observer and composite controller, we have better performance and robustness than conventional PID controller. The asymptotical stability of nonlinear disturbance observer is presented through theoretical analysis. The estimation performance of nonlinear disturbance observer is evaluated by numerical simulation. And performance of disturbance observer based PID controller is evaluated by comparing the performance with conventional PID controller.

Novel Fuzzy Disturbance Observer based on Backstepping Method For Nonlinear Systems (비선형 시스템에서의 백스테핑 기법을 이용한 새로운 퍼지 외란 관측기 설계)

  • Baek, Jae-Ho;Lee, Hee-Jin;Park, Mig-Non
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.2
    • /
    • pp.16-24
    • /
    • 2010
  • This paper is proposed a novel fuzzy disturbance observer based on backstepping method for nonlinear systems with unknown disturbance. Using fuzzy logic systems, a fuzzy disturbance observer with the disturbance observation input is introduced for unknown disturbance. To guarantee that the proposed disturbance observer estimates the unknown disturbance, the disturbance observation error dynamic system is employed. Under the framework of the backstepping design, the fuzzy disturbance observer is constructed recursively and an adaptive laws and the disturbance observation input are derived. Numerical examples are given to demonstrate the validity of our proposed disturbance observer for nonlinear systems.

Robust Adaptive Control for Nonlinear Systems Using Nonlinear Disturbance Observer (외란 관측기를 이용한 비선형 시스템의 강인 적응제어)

  • Hwang, Young-Ho;Han, Byung-Jo;Kim, Hong-Pil;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.327-329
    • /
    • 2006
  • A controller is proposed for the robust adaptive backstepping control of a class of uncertain nonlinear systems using nonlinear disturbance observer (NDO). The NDO is applied to estimate the time-varying lumped disturbance in each step, but a disturbance observer error does not converge to zero since the derivative of lumped disturbance is not zero. Then the fuzzy neural network (FNN) is presented to estimate the disturbance observer error such that the outputs of the system are proved to converge to a small neighborhood of the desired trajectory. The proposed control scheme guarantees that all the signals in the closed-loop are semiglobally uniformly ultimately bounded on the basis of the Lyapunov theorem. Simulation results are presented to illustrate the effectiveness and the applicability of the approaches proposed.

  • PDF

High speed and accurate positioning control of robot manipulator by using disturbance observer (외란 관측기를 이용한 직접 구동형 로봇의 고속.고정도 제어)

  • 서일홍;엄광식;권기호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.948-951
    • /
    • 1996
  • High-speed/high-accuracy control of robot manipulator becomes more and more stringent because of the external disturbance and nonlinear characteristics. To meet this ends, lots of control strategies were proposed in the past such as the computed torque control, the nonlinear decoupled feedback control, and adaptive control. These control methods need computations of the inverse dynamics and require much computational effort. Recently, a disturbance observer with unmodeled robot dynamics and simple algorithms to motion control have been widely studied. This paper proposes a motor control strategy based on the disturbance observer which estimate the disturbance of each joint from input-output relationship of the actuator and eliminate the estimated disturbance including the torque due to modeling errors, coupling force, nonlinear friction, and so on. To apply the disturbance observer to closedloop system like velocity servo pack, the modified control structure was constructed and shown that it is equivalent to a disturbance observer in open-loop system. Finally, using the proposed approach, simulation and experiments were carried out for a two-degree-of-freedom SCARA type direct drive robot, and show some results to verify the effectiveness of the proposed algorithms.

  • PDF

Position Control of a Pneumatic Cylinder with a Nonlinear Compensator and a Disturbance Observer (비선형 보상기와 외란관측기를 이용한 공기압 실리더의 위치제어)

  • Jang, Ji-Seong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.9
    • /
    • pp.1795-1805
    • /
    • 2002
  • A position controller which can achieve a specified dynamic performance irrespective of the different operating position of the pneumatic cylinder is proposed. The position controller developed in this paper is composed of a nonlinear compensator and a disturbance observer. The nonlinear compensator which feeds back position, velocity and acceleration is derived from the nonlinear dominating equations of the position control system to compensate for variation of dynamic characteristics of a pneumatic cylinder according to the change of the operating position. The disturbance observer including a simplified linear model is designed to reduce the effect of model discrepancy in the low frequency range which cannot be suppressed by the nonlinear compensator. The results of the experiments show that the position control performance maintains a designed performance regardless of the variations of an operating position of the pneumatic cylinder.

Fuzzy Disturbance Observer based Multiple Sliding Surface Control of Nonlinear Systems with Mismatched Disturbance (부정합조건 외란을 갖는 비선형 시스템의 퍼지 외란 관측기 기반 다중 슬라이딩 평면 제어)

  • Lee, Sang-Yun;Seo, Hyungkeun;Hyun, Chang-Ho;Park, Mignon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.4
    • /
    • pp.385-391
    • /
    • 2014
  • This paper proposes fuzzy disturbance observer based multiple sliding surface control scheme for nonlinear systems with mismatched disturbance. In order to stabilize nonlinear systems with mismatched disturbance, a controller based on multiple sliding surface control scheme is designed. In addition, a fuzzy disturbance observer is used to estimate the disturbance. Using the fuzzy disturbance observer, "explosion of terms" problem and chattering problem were solved. The stability of the proposed control scheme is analyzed by Lyapunov stability theory. For the verification, we apply the proposed method to numerical examples and compare its result with that of the applied nonlinear disturbance observer based sliding mode control.

Neural-networks-based Disturbance Observer and Tracker Design in the Presence of Unknown Control Direction and Non-affine Nonlinearities (미지의 제어 방향성과 비어파인 비선형성을 고려한 신경망 기반 외란 관측기와 추종기 설계)

  • Kim, Hyoung Oh;Yoo, Sung Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.4
    • /
    • pp.666-671
    • /
    • 2017
  • A disturbance-observer-based adaptive neural tracker design problem is investigated for a class of perturbed uncertain non-affine nonlinear systems with unknown control direction. A nonlinear disturbance observer (NDO) design methodology using neural networks is presented to construct a tracking control scheme with the attenuation effect of an external disturbance. Compared with previous control results using NDO for nonlinear systems in non-affine form, the major contribution of this paper is to design a NDO-based adaptive tracker without the sign information of the control coefficient. The stability of the closed-loop system is analyzed in the sense of Lyapunov stability.

Robust Reduced Order State Observer for Lipschitz Nonlinear Systems (Lipschitz 비선형 시스템의 강인 저차 상태 관측기)

  • Lee, Sung-Ryul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.8
    • /
    • pp.837-841
    • /
    • 2008
  • This paper presents a robust reduced order state observer for a class of Lipschitz nonlinear systems with external disturbance. Sufficient conditions on the existence of the proposed observer are characterized by linear matrix inequalities. It is also shown that the proposed observer design can reduce the effect on the estimation error of external disturbance up to the prescribed level. Finally, a numerical example is provided to verify the proposed design method.

A State Observer for MINO Nonlinear Systems (다입력 다출력 비선형 시스템의 상태 관측기 설계)

  • Lee, Sung-Ryul
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.5
    • /
    • pp.8-12
    • /
    • 2008
  • In this paper, the robust state observer for nonlinear systems with unknown disturbance is proposed. The proposed method has an advantage in that it can reduce the effect of disturbance on estimation error of observer up to a specified level. Therefore, our design a roach can deal with a larger class of uncertain nonlinear system than the existing methods. The sufficient conditions on the existence of robust observer are characterized by well grown linear matrix inequality. Finally, an illustrative example is given to verify the proposed design scheme.

An auto weather-vaning system for a DP vessel that uses a nonlinear controller and a disturbance observer

  • Kim, Dae Hyuk;Kim, Nakwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.1
    • /
    • pp.98-118
    • /
    • 2014
  • An auto weather-vaning system for a Dynamic Positioning (DP) vessel is proposed. When a DP vessel is operating, its position keeping is hindered by ocean environmental disturbances which include the ocean current, wave and wind. Generally, most ocean vessels have a longitudinal length that is larger than the transverse width. The largest load acts on the DP vessel by ocean disturbances, when the disturbances are incoming in the transverse direction. Weather-vaning is the concept of making the heading angle of the DP vessel head toward (or sway from) the disturbance direction. This enables the DP vessel to not only perform marine operations stably and safely, but also to maintain its position with minimum control forces (surge & sway components). To implement auto weather-vaning, a nonlinear controller and a disturbance observer are used. The disturbance observer transforms a real plant to the nominal model without disturbance to enhance the control performance. And the nonlinear controller deals with the kinematic nonlinearity. The auto weather-vaning system is completed by adding a weather-vaning algorithm to disturbance based controller. Numerical simulations of a semi-submersible type vessel were performed for the validation. The results show that the proposed method enables a DP vessel to maintain its position with minimum control force.