• Title/Summary/Keyword: Nonlinear evolution equation

Search Result 53, Processing Time 0.024 seconds

EXISTENCE FOR A NONLINEAR IMPULSIVE FUNCTIONAL INTEGRODIFFERENTIAL EQUATION WITH NONLOCAL CONDITIONS IN BANACH SPACES

  • Yan, Zuomao
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.681-696
    • /
    • 2011
  • In this paper, we consider the existence of mild solutions for a certain class of nonlinear impulsive functional evolution integrodifferential equation with nonlocal conditions in Banach spaces. A sufficient condition is established by using Schaefer's fixed point theorem combined with an evolution system. An example is also given to illustrate our result.

A study of a new interfacial instability between two vertical fluid layers of different densities (수직평판 사이를 흐르는 두 점성유체의 밀도차에 의한 계면의 새로운 불안정성 연구)

  • Lee, Cheol-U;Ju, Sang-U;Lee, Sang-Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.12
    • /
    • pp.3949-3959
    • /
    • 1996
  • A new interfacial instability between two vertical fluid layers of different densities is studied. The two layers are flowing between two parallel vertical plates vertically upward or downward, forming counter- or concurrent flows. In order to extend the study to highly-nonlinear regime in future studies, a nonlinear interface evolution equation is derived, and the stability analysis is performed based on the evolution equation. Among the parameters studies are the ratios of the fluid densities and layer thicknesses and the net flow rate.

TRAVELING WAVE SOLUTIONS FOR HIGHER DIMENSIONAL NONLINEAR EVOLUTION EQUATIONS USING THE $(\frac{G'}{G})$- EXPANSION METHOD

  • Zayed, E.M.E.
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.383-395
    • /
    • 2010
  • In the present paper, we construct the traveling wave solutions involving parameters of nonlinear evolution equations in the mathematical physics via the (3+1)- dimensional potential- YTSF equation, the (3+1)- dimensional generalized shallow water equation, the (3+1)- dimensional Kadomtsev- Petviashvili equation, the (3+1)- dimensional modified KdV-Zakharov- Kuznetsev equation and the (3+1)- dimensional Jimbo-Miwa equation by using a simple method which is called the ($\frac{G'}{G}$)- expansion method, where $G\;=\;G(\xi)$ satisfies a second order linear ordinary differential equation. When the parameters are taken special values, the solitary waves are derived from the travelling waves. The travelling wave solutions are expressed by hyperbolic, trigonometric and rational functions.

OPTIMAL CONTROL PROBLEMS FOR SEMILINEAR EVOLUTION EQUATIONS

  • Jeong, Jin-Mun;Kim, Jin-Ran;Roh, Hyun-Hee
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.3
    • /
    • pp.757-769
    • /
    • 2008
  • This paper deals with the existence of optimal controls and maximal principles for semilinear evolution equations with the nonlinear term satisfying Lipschitz continuity. We also present the necessary conditions of optimality which are described by the adjoint state corresponding to the linear equations without a condition of differentiability for nonlinear term.

TRAVELLING WAVE SOLUTIONS FOR SOME NONLINEAR EVOLUTION EQUATIONS

  • Kim, Hyunsoo;Choi, Jin Hyuk
    • Korean Journal of Mathematics
    • /
    • v.23 no.1
    • /
    • pp.11-27
    • /
    • 2015
  • Nonlinear partial differential equations are more suitable to model many physical phenomena in science and engineering. In this paper, we consider three nonlinear partial differential equations such as Novikov equation, an equation for surface water waves and the Geng-Xue coupled equation which serves as a model for the unidirectional propagation of the shallow water waves over a at bottom. The main objective in this paper is to apply the generalized Riccati equation mapping method for obtaining more exact traveling wave solutions of Novikov equation, an equation for surface water waves and the Geng-Xue coupled equation. More precisely, the obtained solutions are expressed in terms of the hyperbolic, the trigonometric and the rational functional form. Solutions obtained are potentially significant for the explanation of better insight of physical aspects of the considered nonlinear physical models.

NEW EXACT TRAVELLING WAVE SOLUTIONS OF SOME NONLIN EAR EVOLUTION EQUATIONS BY THE(G'/G)-EXPANSION METHOD

  • Lee, You-Ho;Lee, Mi-Hye;An, Jae-Young
    • Honam Mathematical Journal
    • /
    • v.33 no.2
    • /
    • pp.247-259
    • /
    • 2011
  • In this paper, the $(\frac{G'}{G})$-expansion method is used to construct new exact travelling wave solutions of some nonlinear evolution equations. The travelling wave solutions in general form are expressed by the hyperbolic functions, the trigonometric functions and the rational functions, as a result many previously known solitary waves are recovered as special cases. The $(\frac{G'}{G})$-expansion method is direct, concise, and effective, and can be applied to man other nonlinear evolution equations arising in mathematical physics.

NEW EXACT SOLUTIONS OF SOME NONLINEAR EVOLUTION EQUATIONS BY SUB-ODE METHOD

  • Lee, Youho;An, Jeong Hyang
    • Honam Mathematical Journal
    • /
    • v.35 no.4
    • /
    • pp.683-699
    • /
    • 2013
  • In this paper, an improved ($\frac{G^{\prime}}{G}$)-expansion method is proposed for obtaining travelling wave solutions of nonlinear evolution equations. The proposed technique called ($\frac{F}{G}$)-expansion method is more powerful than the method ($\frac{G^{\prime}}{G}$)-expansion method. The efficiency of the method is demonstrated on a variety of nonlinear partial differential equations such as KdV equation, mKd equation and Boussinesq equations. As a result, more travelling wave solutions are obtained including not only all the known solutions but also the computation burden is greatly decreased compared with the existing method. The travelling wave solutions are expressed by the hyperbolic functions and the trigonometric functions. The result reveals that the proposed method is simple and effective, and can be used for many other nonlinear evolutions equations arising in mathematical physics.

Mach Reflection of Sinusoidally-Modulated Nonlinear Stokes Waves by a Thin Wedge

  • Choi, Hang-S.;Chee, Won-S.
    • Selected Papers of The Society of Naval Architects of Korea
    • /
    • v.1 no.1
    • /
    • pp.45-51
    • /
    • 1993
  • By using multiple-scale expansion techniques, the Mach reflection of sinusoidally- modulated nonlinear Stokes waves by a stationary thin wedge has been studied within the framework of potential theory. It is shown that the evolution of diffracted wave amplitude can be described by the Zakharov equation to the loading order and that It reduces to the cubic Schrodinger equation with an additional linear term in the case of stable modulations. Computations are made for the cubic Schrodinger equation for different values of nonlinear and dispersion parameters. Numerical results reflect the experimental findings in terms of the amplitude and width of generated stem waves. Based on the computations it is concluded that the nonlinearity dominates the wave field, while the dispersion does not significantly affect the wave evolution.

  • PDF