• Title/Summary/Keyword: Nonlinearity behavior

Search Result 398, Processing Time 0.024 seconds

Nonlinearity effect on the dynamic behavior of the clayey basin edge

  • Hadi Khanbabazadeh
    • Geomechanics and Engineering
    • /
    • v.36 no.4
    • /
    • pp.367-380
    • /
    • 2024
  • Investigations has shown that the correct estimation of the effective amplification period is as important as the amplification value itself. It gets more important in 2D basins. This study presents a quantitative coefficient for consideration of the nonlinearity effect in terms of amplification value and the shift in its period which is missing or ineffectively considered in the previous studies. To attain this goal, by the application of a time domain fully nonlinear method, the deviation of the more common equivalent linear results from the basin nonlinear behavior under strong ground motions is investigated quantitatively. Also, despite the increase in the damping ratio, the possibility of the increase in the amplification due to the increase in motion strength is shown. To make the results useful in engineering practice, by introducing nonlinearity ratio, the effect of the nonlinearity is quantitatively estimated for two soft and stiff clayey basins with three different depths under a set of motions scaled to two target spectrum. Results show that at the 100 m depth soft clayey basin, while the nonlinearity ratio shows a 35% deviation at the basin edge part under DD1 motion level, its effect moves to the central part with 20% effect under DD3 motion level. By the increase in depth to 150 m, the results show a decrease in the overall effect of the nonlinear behavior for both clay types. At this depth, the nonlinearity ratio gives a 30% and 17% difference on a limited distance from outcrop at the soft clayey basin under DD1 and DD3 motion levels, respectively. At the 30 m depth basins, the nonlinearity ratio shows up to 25% difference for different cases. The presented ratio would be introduced as nonlinearity coefficients for consideration of the nonlinearity effects in the codes. The presented quantitative margins will help the designer to have a better understanding of the amplification period change because of nonlinearity over 2D basin surface.

Significance of nonlinear permeability in the coupled-numerical analysis of tunnelling

  • Kim, Kang-Hyun;Kim, Ho-Jong;Jeong, Jae-Ho;Shin, Jong-Ho
    • Geomechanics and Engineering
    • /
    • v.21 no.2
    • /
    • pp.103-109
    • /
    • 2020
  • The inflow rate is of interest in the design of underground structures such as tunnels and buried pipes below the groundwater table. Soil permeability governing the inflow rate significantly affects the hydro-geological behavior of soils but is difficult to estimate due to its wide range of distribution, nonlinearity and anisotropy. Volume changes induced by stress can cause nonlinear stress-strain behavior, resulting in corresponding permeability changes. In this paper, the nonlinearity and anisotropy of permeability are investigated by conducting Rowe cell tests, and a nonlinear permeability model considering anisotropy was proposed. Model modification and parameter evaluation for field application were also addressed. Significance of nonlinear permeability was illustrated by carrying out numerical analysis of a tunnel. It is highlighted that the effect of nonlinear permeability is significant in soils of which volume change is considerable, and particularly appears in the short-term flow behavior.

Evaluating the accuracy of a new nonlinear reinforced concrete beam-column element comprising joint flexibility

  • Izadpanah, Mehdi;Habibi, AliReza
    • Earthquakes and Structures
    • /
    • v.14 no.6
    • /
    • pp.525-535
    • /
    • 2018
  • This study presents a new beam-column model comprising material nonlinearity and joint flexibility to predict the nonlinear response of reinforced concrete structures. The nonlinear behavior of connections has an outstanding role on the nonlinear response of reinforced concrete structures. In presented research, the joint flexibility is considered applying a rotational spring at each end of the member. To derive the moment-rotation behavior of beam-column connections, the relative rotations produced by the relative slip of flexural reinforcement in the joint and the flexural cracking of the beam end are taken into consideration. Furthermore, the considered spread plasticity model, unlike the previous models that have been developed based on the linear moment distribution subjected to lateral loads includes both lateral and gravity load effects, simultaneously. To confirm the accuracy of the proposed methodology, a simply-supported test beam and three reinforced concrete frames are considered. Pushover and nonlinear dynamic analysis of three numerical examples are performed. In these examples the nonlinear behavior of connections and the material nonlinearity using the proposed methodology and also linear flexibility model with different number of elements for each member and fiber based distributed plasticity model with different number of integration points are simulated. Comparing the results of the proposed methodology with those of the aforementioned models describes that suggested model that only uses one element for each member can appropriately estimate the nonlinear behavior of reinforced concrete structures.

Long-Term Aging Diagnosis of Rotor Steel Using Acoustic Nonlinearity

  • Kim, Chung-Seok;Park, Ik-Keun;Jhang, Kyung-Young;Hyun, Chang-Yong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.6
    • /
    • pp.642-649
    • /
    • 2011
  • The long-term aging of ferritic 2.25CrMo steel was characterized using the acoustic nonlinear effect in order to apply to diagnose the degradation behavior of structural materials. We measured the acoustic nonlinearity parameter for each thermally aged specimen by the higher harmonic-generation technique. The acoustic nonlinearity parameter increased with aging time due to equilibrium M6C carbide precipitation, and has a favorable linear relation with Rockwell hardness. This study suggests that acoustic nonlinearity testing may be applicable to diagnostics on strength degradation in rotor steels.

Vibration Analysis of Composite Laminated Plates Considered in Material-Nonlinearity (재료비선형을 고려한 복합적층판의 진동해석)

  • Seok, Keun-Yung;Kang, Joo-Won;Shin, Young-Shik
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.4 s.22
    • /
    • pp.45-52
    • /
    • 2006
  • FRP laminated plates have strong material-nonlinearity. Through vibration Analysis of FRP laminated plates, the result of nonlinearity analysis is compared with the result of linearity analysis according to stacking angle and squency. This study is a fundamental study about displacement in nonlinearity dynamic behavior of FRP laminated plates.

  • PDF

Detection of nonlinear structural behavior using time-frequency and multivariate analysis

  • Prawin, J.;Rao, A. Rama Mohan
    • Smart Structures and Systems
    • /
    • v.22 no.6
    • /
    • pp.711-725
    • /
    • 2018
  • Most of the practical engineering structures exhibit nonlinearity due to nonlinear dynamic characteristics of structural joints, nonlinear boundary conditions and nonlinear material properties. Hence, it is highly desirable to detect and characterize the nonlinearity present in the system in order to assess the true behaviour of the structural system. Further, these identified nonlinear features can be effectively used for damage diagnosis during structural health monitoring. In this paper, we focus on the detection of the nonlinearity present in the system by confining our discussion to only a few selective time-frequency analysis and multivariate analysis based techniques. Both damage induced nonlinearity and inherent structural nonlinearity in healthy systems are considered. The strengths and weakness of various techniques for nonlinear detection are investigated through numerically simulated two different classes of nonlinear problems. These numerical results are complemented with the experimental data to demonstrate its suitability to the practical problems.

Effects of Material Nonlinearity on Seismic Responses of Multistoried Buildings with Shear Walls and Bracing Systems

  • Islam, Md. Rajibul;Chakraborty, Sudipta;Kim, Dookie
    • Architectural research
    • /
    • v.24 no.3
    • /
    • pp.75-84
    • /
    • 2022
  • Scads of earthquake-resistant systems are being invented around the globe to ensure structural resistance against the lateral forces induced by earthquake loadings considering structural safety, efficiency, and economic aspects. Shear wall and Bracing systems are proved to be two of the most viable solutions for seismic strengthening of structures. In the present study, three numerical models of a G+10 storied building are developed in commercial building analysis software considering shear wall and bracing systems for earthquake resistance. Material nonlinearity is introduced by using plastic hinges. Analyses are performed utilizing two dynamic methods: Response Spectrum analysis and nonlinear Time-history analysis using Kobe and Loma Prieta earthquake data and results are compared to observe the nonlinear behavior of structures. The outcomes exposed that a significant increase in the seismic responses occurs due to the nonlinearity in the building systems. It was also found that building with shear wall exhibits maximum resistance and minimum nonlinearity when subjected to dynamic loadings.

A Study on the Nonlinear Structural Behavior of a High-Pressure Filament Wound Composite Vessel (소형 복합재료 고압력 용기에 대한 비선형적 구조거동에 관한 연구)

  • 황경정;박지상;정재한;김태욱
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.10-14
    • /
    • 2002
  • Structural behavior of high-pressure composite vessels of TYPE 3 (full-wrapped over a seamless aluminum liner) was studied through numerical simulations based on 3D nonlinear finite element method. Under high-pressure loading, a TYPE 3 composite vessel shows material nonlinearity due to elastic-plastic deformation of aluminum liner, and mismatch of deformation at the junction of cylinder and dome causes geometrical nonlinearity. Finite element modeling and analysis technique considering this nonlinearity was presented, and a pressure vessel of 6.8L of internal volume was analyzed. Design specification to satisfy requirements was determined based on analysis results.

  • PDF

Predictions of Nonlinear Behavior and Strength of Thick Composites with Fiber Waviness under Tensile/Compressive Load (굴곡진 보강섬유를 가진 두꺼운 복합재료의 인장/압축 비선형 거동 및 강도예측)

  • 유근수;전흥재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.819-822
    • /
    • 2001
  • Fiber waviness is one of manufacturing defects encountered frequently in thick composite structures. It affects significantly on the behavior as well as strength of thick composites. Thick composites with fiber waviness have two kinds of nonliearity. One is material nonlinearity, and the other is geometrical nonliearity due to fiber waviness. There are only a few studies that have considered both material and geometrical nonlinearities. In this paper, a FEA model was proposed to predict nonlinear behavior and strength of thick composites with fiber waviness.

  • PDF

A Study on the Nonlinearity of Chaotic Signal by Bispectral Analysis (바이스펙트럼 해석에 의한 카오스 신호의 비선형성에 관한 연구)

  • Lee, Hae-Jin;Lee, Gyeong-Tae;Park, Young-Sun;Cha, Kyung-Joon;Park, Moon-Il;Oh, Jae-Eung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.8
    • /
    • pp.817-825
    • /
    • 2007
  • During thirty years, deterministic chaos has moved center stage in many areas of applied mathematics. One important stimulus for this, particularly in the early 1970s, was work on nonlinear aspects of the dynamics of plant and animal populations. There are many situations, at least to a crude first approximation, by a simple first-order difference equation. Past studies have shown that such equations, even though simple and deterministic, can exhibit a surprising array of dynamical behavior, from stable points, to a bifurcating hierarchy of stable cycles, to apparently random fluctuations. But higher-order spectral analyses of such behavior are usually not considered. Higher-order spectra of a signal contain important information that is not present in its power spectrum. So, if we find the spectral pattern and get information from it, it will be able to be used effectively in so many fields. Hence, this paper uses auto bicoherence and bicoherence residue which are sort of bispectrum. Applying these to behavior of logistic difference equation, which is typical chaotic signal, the phenomenon of phase coupling and the appearance of frequency band can be analyzed. Such information means that bispectral analysis is useful to detect nonlinearity of signal.