• 제목/요약/키워드: Nonpremixed Flame

검색결과 111건 처리시간 0.035초

DME/Air 비예혼합화염의 NOx 생성 특성에 관한 기초 연구 (Fundamental Studies on NOx Emission Characteristics in a Dimethyl Ether/Air Nonpremixed Flame)

  • 김태현;김종현;이창언
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.1973-1978
    • /
    • 2008
  • The NOx emission characteristics of DME in counterflow nonpremixed flames were investigated numerically, and brief experiments were carried out to compare the flame shapes and NOx emissions with those of $C_3H_8$ and $C_2H_6$. The DME flames were calculated using Kaiser's mechanism, while the $C_2H_6$ flames were calculated using the $C_3$ mechanism. These mechanisms were combined with the modified Miller-Bowman mechanism for the analysis of NOx. Experimental results show that DME flame has the characteristics of partial premixed flame and the flame length becomes very shorter compared with general hydrocarbon fuels and then, the NOx emission of DME is low as much as 60% of $C_3H_8$. In the calculated results of counterflow nonpremixed flames, the EINO of DME nonpremixed flame is low as much as 50% of the $C_2H_6$ nonpremixed flame. The cause of $EI_{NO}$ reduction is attributed mainly to the characteristics of partial premixed flame due to the existence of O atom in DME and partly to the O-C bond in DME, instead of C-C bond in hydrocarbon fuels.

  • PDF

DME/Air 비예혼합화염의 NOx 생성에서 산소원자의 역할 (The Role of Oxygen Atom in the NOx Formation of DME/Air Nonpremixed Flames)

  • 김태현;황철홍;이승로;이창언
    • 한국연소학회지
    • /
    • 제14권1호
    • /
    • pp.9-18
    • /
    • 2009
  • The NOx emission characteristics of DME in counterflow nonpremixed flames were investigated numerically, and brief experiments were carried out to compare the flame shapes and NOx emissions with those of $C_{3}H_{8}$ and $C_{2}H_{6}$. The DME flames were calculated using Kaiser's mechanism, while the $C_{2}H_{6}$ flames were calculated using the $C_3$ mechanism. These mechanisms were combined with the modified Miller-Bowman mechanism for the analysis of NOx. Experimental results show that DME flame has the characteristics of partial premixed flame and the flame length becomes very shorter compared with general hydrocarbon fuels and then, the NOx emission of DME is low as much as 60 % of $C_{3}H_{8}$. In the calculated results of counterflow nonpremixed flames, the $EI_{NO}$ of DME nonpremixed flame is low as much as 50 % of the $C_{2}H_{6}$ nonpremixed flame. The cause of $EI_{NO}$ reduction is attributed mainly to the characteristics of partial premixed flame due to the existence of O atom in DME and partly to the O-C bond in DME, instead of C-C bond in hydrocarbon fuels.

  • PDF

다수노즐에 의한 확산화염의 안정성 확대에 관한 연구 (The Stability of Turbulent nonpremixed interacting Flames)

  • 김진현;이병준
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 제26회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.201-207
    • /
    • 2003
  • Characteristic of turbulent nonpremixed interacting flames are investigated experimentally 8 or 9 nozzles are arranged in the shape of matrix or circle. When there is no center nozzle, flame is more stable than with center nozzle case. It is shown that these blowout limit enlargements are related with the recirculation of burnt gases. The interacting flame base was not located at the stoichiometric point. NO concentrations of interacting flame are smaller than that of single flame using same area nozzle.

  • PDF

석탄가스 선회난류 비예혼합 화염장의 화염구조 및 NOx 배출특성 해석 (Numerical Study on Structure and Pollutant Formation for Syngas Turbulent Nonpremixed Swirling Flames)

  • 이정원;강성모;김용모;주용진
    • 한국연소학회지
    • /
    • 제14권2호
    • /
    • pp.10-17
    • /
    • 2009
  • The present study numerically investigate the effects of the Syngas chemical kinetics on the basic flame properties and the structure of the Syngas nonpremixed flames. In order to realistically represent the turbulencechemistry interaction and the spatial inhomogeneity of scalar dissipation rate, the Eulerian Particle Flamelet Model (EPFM) with multiple flamelets has been applied to simulate the combustion processes and NOx formation in the syngas turbulent nonpremixed flames. Validation cases include the Syngas turbulent nonpremixed jet and swirling flames. Based on numerical results, the detailed discussion has been made for the effects of the chemical kinetics, the flame structure, and NOx formation characteristics in the turbulent Syngas nonpremixed flames.

  • PDF

대향류 비예혼합화염과 상호작용하는 단일 와동의 생성특성에 관한 연구 (An Investigation on the Formation Characteristics of a Single Vortex Interacting with Counterflow Nonpremixed Flame)

  • 유병훈;오창보;황철홍;이창언
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제25회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.49-56
    • /
    • 2002
  • A two-dimensional direct numerical simulation is performed to investigate the formation characteristics of a single vortex interacting with $CH_4/N_2$-Air counterflow nonpremixed flame. The numerical method was based on a predictor-corrector scheme for a low Mach number flow. The detailed transport properties and a 16-step augmented reduced mechanism are adopted in this calculation. The budgets of the vorticity transport equation arc examined to reveal the mechanisms leading to the formation, evolution and dissipation of a single vortex interacting with counterflow nonpremixed flame. It is found that the stretching term, which depends on the azimuthal component of vorticity, and radial velocity, mainly generates vortieitv in non-reacting and reacting flows. The viscous and baroclinic torque term destroy the vorticity in non-reacting flow. In addition, the baroclinic torque term due to density and pressure gradient generates vorticity, while viscous and the volumetric expansion terms due to density gradient destroy vorticity in reacting flow.

  • PDF

대향류 에틸렌/공기 비예혼합 화염의 구조 및 Soot 생성 메커니즘 해석 (Numerical Analysis for the Detailed Structure and the Soot Formation Mechanism in Counterflow Ethylene-Air Nonpremixed Flame)

  • 임효준;김후중;김용모
    • 한국자동차공학회논문집
    • /
    • 제7권5호
    • /
    • pp.40-54
    • /
    • 1999
  • The flame structure and soot formation in the counterflow Ethylene-Air nonpremixed flame are numerically analyzed. The present soot reaction mechanism involves nucleation, surface growth, particle coagulation, and oxidation steps. The gas phase chemistry and the soot nucleation, surface growth reactions are coupled by assuming that the nucleation and soot mass growth has the certain relationship with the concentration of benzene and acetylene. In terms of the centerline velocity and the soot volume fraction, the predicted results are compared with the experimental data. The detailed discussion has been made for the sensitivity of model constants and the deficiencies of the present model. Numerical results indicated that the acetylene addition to the soot surface plays the dominant role in the soot mass growth for the counterflow nonpremixed flame.

  • PDF

비예혼합 튜브형상내 화염셀의 거동에 대한 수치 해석적 연구 (A Numerical Study of the Flame Cell Dynamics in Opposed Nonpremixed Tubular Configuration)

  • 박현수;유춘상
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.175-178
    • /
    • 2014
  • The flame cell dynamics in 2-D opposed nonpremixed tubular configuration was investigated using high-fidelity numerical simulations. The diffusive-thermal instability occurs as the $Damk{\ddot{o}}hler$ number, Da, approaches the 1-D extinction limit of the tubular flames and several flame cells are generated depending on Da, and flame radius. In general, the number of flame cells are found close to the largest wave number from the linear stability analysis. It was also found from the displacement speed analysis that during the local flame extinction and cell formation, negative edge flame speed is observed due to small gain from reaction compared to large loss from diffusion.

  • PDF

와동에 의해 교란된 대향류 비예혼합화염의 반응물 전달기구 (Reactants Transport Mechanism in Counterflow Nonpremixed Flame Perturbed by a Vortex)

  • 오창보;이창언
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1690-1696
    • /
    • 2003
  • A two-dimensional direct numerical simulation is performed to investigate the flame structure of $CH_4/N_2$-Air counterflow nonpremixed flame interacting with a single vortex. The detailed transport properties and a modified 16-step augmented reduced mechanism based on Miller and Bowman's detailed chemistry are adopted in this calculation. The results show that an initially flat stagnation plane, where an axial velocity is zero, is deformed into a complex-shaped plane, and an initial stagnation point is moved far away from vortex head when the counterflow field is perturbed by the vortex. It is noted that the movement of stagnation point can alter the mechanism of reactants (fuel and oxidizer) fluxes into the flame surface, and then can alter the flame structure.

  • PDF

석탄가스 난류 선회 비예혼합 연소기의 화염구조 및 공해물질 생성의 해석 (Numerical Study on Flame Structure and Pollutant Formation for Syngas Turbulent Nonpremixed Swirling Flames)

  • 이정원;김용모
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제44회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.289-291
    • /
    • 2012
  • The present study numerically investigate detailed flame structure of the Syngas diffusion flames. In order to realistically represent the turbulence-chemistry interaction and the spatial inhomogeneity of scalar dissipation rate, the Eulerian Particle Flamelet Model(EPFM) with multiple flamelets has been applied to simulate the combustion processes and NOx formation in the syngas turbulent nonpremixed flames. And level-set approach is also utilized to account for the partially premixing effect at fuel and oxidizer injector in KEPRI nonpremixed combustor. Based on numerical results, the detailed discussion has been made for the precise structure and NOx formation characteristics of the turbulent syngas nonpremixed flames.

  • PDF

석탄가스 선회난류 연소기의 화염구조 및 공해물질 배출특성 해석 (Numerical Study on Flame Structure and Pollutant Formation for Syngas Turbulent Nonpremixed Swirl Burner)

  • 이정원;강성모;김용모
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.449-452
    • /
    • 2007
  • The present study numerically investigate the effects of the Syngas chemical kinetics on the basic flame properties and the structure of the Syngas diffusion flames. In order to realistically represent the turbulence-chemistry interact ion and the spatial inhomogeneity of scalar dissipation rate. the Eulerian Particle Flamelet Model(EPFM) with multiple flamelets has been applied to simulate the combustion processes and NOx formation in the syngas turbulent nonpremixed flames. Due to the ability for interactively describing the transient behaviors of local flame structures with CFD solver, the EPFM model can effectively account for the detailed mechanisms of NOx format ion including thermal NO path, prompt and nitrous NOx format ion, and reburning process by hydrocarbon radical without any ad-hoc procedure. validation cases include the Syngas turbulent nonpremixed jet and swirling flames. Based on numerical results, the detailed discussion has been made for the sensitivity of the Syngas chemical kinetics as well as the precise structure and NOx formation characteristics of the turbulent Syngas nonpremixed flames.

  • PDF