• Title/Summary/Keyword: Nonylphenol

Search Result 146, Processing Time 0.027 seconds

Behavior Characteristics of Nonylphenol in the Downstream of River in Busan, Korea (부산 도심하천 하구의 Nonylphenol 거동 특성)

  • Kim, Sunyoung;Roh, Kyong-Joon;Kim, Dong-Myung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.52 no.1
    • /
    • pp.74-80
    • /
    • 2019
  • Nonylphenol is an endocrine-disrupting chemical that is the degradation product of the nonionic surfactants nonylphenol ethoxylates. To understand the contamination and behavioral characteristics of nonylphenol, we measured the nonylphenol concentrations in surface water in the lower reaches of the Suyeong River, Korea. The results were used to estimate the material balance. The target area was divided into three regions to estimate the material balance of nonylphenol. In region 1, in flux of the dissolved nonylphenol was 282.3 g/day and the nonylphenol influx in particulate suspended solids was 1,582.8 g/day. The dissolved nonylphenol outflow discharged toward region 2 was 192.5 g/day, while the adsorption to particulate suspended solids was 89.8 g/day. Within the particulate suspended solids, the outflow to region 2 was 1,250.0 g/day, while the estimated amount settling in the sediments was 422.7 g/day. The adsorption of dissolved nonylphenol to the particulate suspended solids in regions 1 and 2 was 31.8% and 54.9%, respectively. In region 3, the desorption rate was 8.8%.

Biodegradation Kinetics of Nonylphenol Ethoxylates by Pseudomonas sp. (Pseudomonas sp.에 의한 Nonylphenol Ethoxylates의 Kinetics)

  • 김수정;이종근;이상준
    • Journal of Environmental Science International
    • /
    • v.2 no.4
    • /
    • pp.271-278
    • /
    • 1993
  • Optimal biodegradation kinetics models to the initial nonylphenol ethoxylates-30 concentration were investigated and had been fitted by the linear regression. Microorganisms capable of degrading nonylphenol ethoxylates-30 were isolated from sewage near Ulsan plant area by enrichment culture technique. Among them, the strain designated as EL-10K had the highest biodegradability and was identified as Pseudomonas from results of taxonomical studies. The optimal conditions for the biodegradation were 1.0 g/ι of nonylphenol ethoxylates-30 and 0.02 g/ι of ammonium nitrate at pH 7.0 and 3$0^{\circ}C$. The highest degradation rate of nonylphenol ethoxylates-30 was about 89% for 30 hours incubation on the optimal condition. Biodegradation data were fit by linear regression to equations for 3 kinetic models. The kinetics of biodegradation of nonylphenol ethoxylates was best described by first order model for 0.1 $\mu\textrm{g}$/ι nonylphenol ethoxylates-30 ; by Monod no growth model and Monod with growth model for 0.5 $\mu\textrm{g}$/mι and 1.0, 5.0 $\mu\textrm{g}$/mι, respectively.

  • PDF

Ecological modeling for toxic substances - I . Numerical simulation of transport and fate of Nonylphenol in Tokyo Bay- (유해화학물질의 생태계 모델링 - I. 동경만 Nonylphenol의 환경동태 해석 -)

  • Kim Dong-Myung;Shiraishi Hiroaki
    • Journal of Environmental Science International
    • /
    • v.14 no.9
    • /
    • pp.827-835
    • /
    • 2005
  • A three-dimensional ecological model (EMT -3D) was applied to Nonylphenol in Tokyo Bay. EMT -3D was calibrated with data obtained in the study area. The simulated results of dissolved Nonylphenol were in good agreement with the observed values, with a correlation coefficient(R) of 0.7707 and a coefficient of determination (R2) of 0.5940. The results of sensitivity analysis showed that biodegradation rate and bioconcentration factor are most important factors for dissolved Nonylphenol and Nonylphenol in phytoplankton, respectively. In the case of Nonylphenol in particulate organic carbon, biodegradation rate and partition coefficient were important factors. Therefore, the parameters must be carefully considered in the modeling. The mass balance results showed that standing stocks of Nonylphenol in water, in particulate organic carbon and in phytoplankton are $8.60\times 10^5\;g,\;2.19\times 10^2\;g\;and\;3.78\times 10^0\;g$ respectively. With respect to the flux of dissolved Nonylphenol, biodegradation in the water column, effluent to the open sea and partition to particulate organic carbon were $6.02\times10^3\;g/day,\;6.02\times10^2\;g/day\;and\;1.02\times10^1\;g/day$, respectively.

Risk Assessment of Nonylphenol using Sex Ratio, Sexual Maturation, Intersex and Lipofuscin Accumulation of the Equilateral Venus Gomphina veneriformis (Bivalvia: Veneridae) (대복 Gomphina veneriformis의 성비, 성 성숙, intersex 및 지방갈색소 침적을 이용한 nonylphenol의 위해성 평가)

  • Lee, Jung-Sick;Park, Jung-Jun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.40 no.1
    • /
    • pp.16-23
    • /
    • 2007
  • Nonylphenol (NP) is an estrogen-mimicking compound or xenoestrogen. This study investigated the effects of nonylphenol on the reproductive status of the equilateral venus Gomphina veneriformis. The experiment lasted 24 weeks, Experimental groups consisted of a control and three nonylphenol exposures ($1.0,\;2.5,\;and\;5.0\;{\mu}g\;NP/L$). Mortality did not differ significantly between the control and the exposure groups. The sex ratio (F:M) was 1:1 in nature and 1:1.03 in the control group. However, it changed to 1:3.5 with $5.0\;{\mu}g\;NP/L$ exposure. Gonad maturity in females was higher in the nonylphenol exposure groups than in the control group. By contrast, in males, it was lower in the nonylphenol exposure groups. Intersex individuals constituted 0% in nature, 3.08% in the control group, and 23.6% in the group exposed to nonylphenol, with female characteristics more prevalent than male. As the concentration of nonylphenol increased, the accumulation of lipofuscin increased in the mid-gut gland.

Distribution of Nonylphenol in Gwangyang Bay and the Surrounding Streams (광양만 및 주변 하천에서의 노닐페놀 화합물 분포)

  • 이동호;김민선;심원준;임운혁;홍상희;오재룡
    • Korean Journal of Environmental Biology
    • /
    • v.22
    • /
    • pp.71-77
    • /
    • 2004
  • Alkylphenols (8), chlorophenols (2), bisphenol A, eoprostanols (2) and cholesterol compounds were analyzed in the surface water and surface sediment taken from Gwangyang Bay and surrounding streams in 2001. Among the target analytes, nonylphenol and dihydrocholesteyol compounds were detected with high concentration and high frequency. t-Octylphenol, bisphenol A and coprostanols were detected only in some sediment samples from the stream. The highest concentration of nonylphenol was determined in stream sample, and concentrations of nonylphenol in the inner part of Gwangyang Bay were higher than those in the out part. Nonylphenol concentrations in the surface seawater and surface sediment samples ranged from 4.0 to 74.0 ng l$\^$-1/ and from 3.1 to 74.3 ng g$\^$-1/ dry wt., respectively. Partition coefficient (LogK$\_$oc/) of nonylphenol between sediment and water was 4.8. Nonylphenol nnd dihydrocholesteol concentrations in the stream surface sediment samples ranged from 4.6 to 808.6 and from 78.4 to 1133.6 ng g$\^$-1/ dry wt., respectively. Relatively high concentrations of nonylphenol were found in the stream samples which aye flowing through industrial complex area, while dihydrocholesterol concentration was relatively high in the stream samples which are flowing through only municipal area. Seaward decreasing tyend in nonylphenol concentration was observed from the Seomjin River estuary to the Gwanyang Bay. Such trend was best supported by the strong correlation between nonylphenol concentration and salinity in water samples.

Effect of Temporary Loading of Nonylphenol on a Summer Planktonic Community in a Eutrophic Pond

  • Baek, Seung-Ho;Katano, Toshiya;Han, Myung-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.4
    • /
    • pp.519-529
    • /
    • 2008
  • Recent studies reveal one of the representative endocrine disrupters of nonylphenol affects on the composition of a planktonic community. Since nonylphenol is sometimes discharged into eutrophic waters, we monitored planktonic community composition of a eutrophic pond after receiving nonylphenol when cyanobacterium Microcystis aeruginosa mainly dominated. The experiment was carried out two times using small-scale microcosms in a laboratory. In both two experiments, ciliate abundances significantly decreased when nonylphenol was added. On the seventh day, the ciliate abundances in $10{\mu}g\;L^{-1}$ added treatments decreased by 36.9% in the first experiment and 33.6% in the second, when compared to the control. The response of other planktonic groups was less obvious to nonylphenol addition. In particular, in the first experiment, Chl. b/Chl. $\alpha$ and Chl. c/Chl. $\alpha$ significantly increased with the addition of nonylphenol, while total Chl. $\alpha$ concentration did not change. Indeed, bacillariophyceae and chlorophyceae abundances tended to increase with nonylphenol dosing. From these results, we tentatively hypothesized that nonylphenolloading positively affects on abundances of edible phytoplankton such as Scenedesmus spp. and diatoms by releasing from grazing pressure due to decrease in ciliate abundances. The present study emphasizes that the indirect effect of endocrine disrupters should be paid more attention when freshwater resources are polluted by them.

The Effects of Nonylphenol on Freshwater Phytoplankton and Zooplankton Communities

  • Katano, Toshiya;Park, Chong-Sung;Baek, Seung-Ho;Han, Myung-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.4
    • /
    • pp.449-456
    • /
    • 2008
  • Recent studies reveal that the endocrine disrupter nonylphenol can also influence the growth of planktonic organisms. To clarify the effect of nonylphenol on the whole planktonic community, we monitored planktonic abundances after addition of nonylphenol using small-scale microcosms in a laboratory. Nonylphenol was added at final concentrations of 1.25 and $2.5{\mu}g\;L^{-1}$, close to the EC50 for the growth of the rotifer, Brachionus calyciflorus. Chlorophyll $\alpha$ concentration increased significantly between 2 to 5 days after nonylphenol treatment compared to the control. The abundance of the predominant phytoplankton, Stephanodiscus hantzschii, followed the same pattern as chlorophyll a concentration. While there was no negative effect on the abundance of ciliates and rotifers, crustacean zooplankton abundance was higher in nonylphenol treatments. Although the relationship did not reach significance, the growth rate of rotifers tended to decline with increasing nonylphenol dosing. It is likely that the decreased rotifer grazing on S. hantzschii caused significant increase in their abundance. This study emphasizes the importance of considering indirect effects of environmental pollutants when predicting the response of biological community to toxicant exposure.

Risk Assessment of Soil through Earthworm Toxicity Test of Nonylphenol and Bisphenol A (Nonylphenol과 Bisphenol A의 지렁이 독성시험 및 토양 중 생태 위해성평가)

  • Lee Chul Woo;Park Soo Young;Yun Jun Heon;Choi Kyung Hee;Chung Young Hee;Kim Hyun Mi
    • Environmental Analysis Health and Toxicology
    • /
    • v.20 no.4 s.51
    • /
    • pp.279-286
    • /
    • 2005
  • Earthworm (Eisenia fetida) acute toxicity test was carried out and ecological risk assessment in soil was performed with national monitoring data. 14 day - $LC_{50}$ of nonylphenol and bisphenol A were 288.1 mg/kg and 90.1 mg/kg, respectively. And NOECs of nonylphenol and bisphenol A were 250 mg/kg and 50 mg/kg, respectively. Significant weight decrement was appeared at 70 mg/kg of bisphenol A, however, nonylphenol at concentrations tested did not severe adverse effect on the weight decrement. The environmental monitoring has been carrying out by NIER since 1999. Exposure levels of nonylphenol in soil were ND$\sim$10.55 $\mu$g/kg and those of bisphenol A were ND$\sim$15.50$\mu$g/kg in National Monitoring data which had been performed from 2000 to 2004. The measured soil exposure level was applied to evaluate the environmental risk assessment. The values of PNEC for bisphenol A and nonylphenol were determined as 0.5 mg/kg and 2.5 mg/kg, respectively using the safety factors which were suggested in EU and OECD. The values of HQ (PEC/PNEC) were determined to be below I for bisphenol A and nonylphenol when the maximum exposure levels for bispheol A (15.50$\mu$g/kg) and nonylphenol (10.55$\mu$g/kg) were applied. Conclusively, the environmental risk assessment of bisphenol A and nonylphenol was not critical in soil.

Effect of endocrine disrupter, Nonylphenol and DEHP(Di-(2ethylhexyl)phatalate) on the cocoon production and the hatchability of Eisenia fetida (Ennelida: Oligochaeta) (내분비교란물질인 Nonylphenol과 DEHP(Di-(2ethylhexyl)phatalate)가 줄지렁이(Eisenia fetida)의 산란 및 부화에 미치는 영향)

  • Park, Kwang-Il;Bae, Yoon-Hwan
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.2
    • /
    • pp.89-95
    • /
    • 2012
  • This study was carried out to investigate the effects of endocrine interupter, Nonylphenol and DEHP on the cocoon production, the hatchability of cocoon and the number of offsprings per cocoon of Eisenia fetida. And the cocentrations of Nonylphenol and DEHP of sewage sludges in Pocheon city (Northeastern area of South Korea) were also investigated. Nonylphenol below the concentration of 100 mg $kg^{-1}$ did not reduce the cocoon production, the hatchability of cocoon and the number of offsprings per cocoon. DEHP above the concentration of 1,500 mg $kg^{-1}$ reduced the cocoon production, and DEHP over the concentration of 2,500 mg $kg^{-1}$ could reduce the hatchability. There was no Nonylphenol in sewage sludge of Pocheon city, but maximum concentration of DEHP was 1,640mg $kg^{-1}$, which could make the population of Eisenia fetida extinct gradually if sewage sludge of Pocheon was supplied to Eisenia fetida for a long time.

Isolation of a Pseudomonas sp. Capable of Utilizing 4-Nonylphenol in the Presence of Phenol

  • Chakraborty Joydeep;Dutta Tapan K.
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.11
    • /
    • pp.1740-1746
    • /
    • 2006
  • Enrichment techniques led to the isolation of a Pseudomonas sp. strain P2 from municipal waste-contaminated soil sample, which could utilize different isomers of a commercial mixture of 4-nonylphenol when grown in the presence of phenol. The isolate was identified as Pseudomonas sp., based on the morphological, nutritional, and biochemical characteristics and 16S rDNA sequence analysis. The ${\beta}$-ketoadipate pathway was found to be involved in the degradation of phenol by Pseudomonas sp. strain P2. Gas chromatography-mass spectrometric analysis of the culture media indicated degradation of various major isomers of 4-nonylphenol in the range of 29-50%. However, the selected ion monitoring mode of analysis of biodegraded products of 4-nonylphenol indicated the absence of any aromatic compounds other than those of the isomers of 4-nonylphenol. Moreover, Pseudomonas sp. strain P2 was incapable of utilizing various alkanes individually as sole carbon source, whereas the degradation of 4-nonylphenol was observed only when the test organism was induced with phenol, suggesting that the degradation of 4-nonylphenol was possibly initiated from the phenolic moiety of the molecule, but not from the alkyl side-chain.