• Title/Summary/Keyword: Noradrenergic system

Search Result 24, Processing Time 0.023 seconds

Effect of Testosterone on Central Noradrenergic Nervous System and LHRH (중추 노르아드레날린성 신경계 및 황체호르몬 분비 촉진호르몬에 대한 테스토스테론의 영향)

  • 고홍숙;김경진;박종세;고광호
    • YAKHAK HOEJI
    • /
    • v.35 no.4
    • /
    • pp.295-300
    • /
    • 1991
  • Ralationship between noradrenergic nervous system activity and luteinizing hormone releasing hormone(LHRH) content mediated by testosterone in hypothalamus was tested. Three groups of adult male animals were prepared; (1) Intact; (2) Castration+Vehicle (Cast+V); (3) Castration+Testosterone (Cast+T). Silastic capsule containing vehicle or testosterone was implanted into neck region of animals two weeks following castration. Norepinephrine content, alpha-adrenergic receptor binding characteristics using H$^{3}$-WB4101, and content of LHRH by LHRH RIA procedure were determined. Testosterone replacement to castrated male rats augmented the content of norepinephrine and LHRH. Testosterone replacement increased the alpha-adrenergic receptor density but did not change alpha-receptor affinity. The data from the present study suggest that increase in LHRH content by testosterone may be positively coupled to the activity of central noradrenergic nervous system.

  • PDF

Screening of Potential Compounds Promoting BDNF Production in Noradrenergic Locus Coeruleus Neurons (노르아드레날린성 신경세포에서의 BDNF 생산 증진 물질 탐색)

  • 전홍성
    • KSBB Journal
    • /
    • v.18 no.3
    • /
    • pp.207-210
    • /
    • 2003
  • The locus coeruleus (LC) contains about half of the total number of noradrenergic neurons in the brain and those noradrenergic neurons from the LC innervate entire brain regions. The LC is a major common target region in several neurodegenerative disorders such as Alzheimer's, Pakinson's and Huntington's diseases. The brain-derived neurotrophic factor (BDNF) regulate neuronal cell survival and differentiation of central nervous system neurons, including LC noradrenergic neurons. In this study, various small molecules and growth factors were tested as candidates to promote the production of BDNF in LC noradrenergic neuronal cells. The molecules tested include neuropeptides, cytokines, growth factors, neurotransmitters, and intracellular signaling agents. Four small molecules or growth factors, FGF8b, BMP-4, forskolin, and dibutyryl cGMP, were found to increase the release of BDNF in LC noradrenergic neurons. Especially, BMP-4 significantly enhanced BDNF production over 2.5-fold in LC noradrenergic neurons.

Relationship between Maintenance of Hypertension and Central Noradrenergic Nervous System Activity in Spontaneously Hypertensive Rats (선천성 고혈압 쥐에서 고혈압 지속현상과 중추신경계 노르아드레날린성 신경활성과의 상관성)

  • 고광호;신재수;김미영
    • YAKHAK HOEJI
    • /
    • v.30 no.6
    • /
    • pp.334-342
    • /
    • 1986
  • The relationship between the maintenance of hypertension and the central noradrenergic nervous system activity in spontaneously hypertensive rats (SHR) was studied. The norepinephrine turnover rates in 5 brain areas; telencephalon, hypothalamus/thalamus, midbrain, pons/medulla, cerebellum as a measure of noradrenergic neuronal activity were measured at the ages of 14 weeks in SHR and normotensive Wistar rats. In 14-week old SHR, blood pressure was significantly higher than in normotensive rat, and central norepinephrine turnover rates were significantly greater in telencephalon, hypothalamus/thalamus, midbrain. There were no differences between norepinephrine turnover rates in pons/medulla, cerebellum of SHR and those of normotensive rats.

  • PDF

The Activity of Dopamine $\beta$-Hydroxylase of Central Nervous System in Genetically Epilepsy Prone Rats

  • Park, Youn-Joo;Chung, Hye-Joo;Lee, Kwang-Ho;Ko, Kwang-Ho
    • Archives of Pharmacal Research
    • /
    • v.14 no.2
    • /
    • pp.172-175
    • /
    • 1991
  • Abnormality in the central noradrenergic system may be related to the seizure prone state in the genetically epilepsy prone rats (GEPR). The present work deals with the characterization of the deficit in noradrenergic system if susceptitibility and intensity of seizure are dependent on central noradrenregic activities by comparing the activities of dopamine $\beta$-hydroxylase (DBH) which hydroxylates dopamine into noradrenaline. DBH activities were measured in 5 areas of brain of normal rats, native GEPR and severe GEPR. The results suggest that lower DBH activities in the midbrain of GEPRs may positively be coupled to the susceptibility to seizure, whereas the same characteristics of the native or severe GEPR are not neccessarily in parallel with the intensity of seizure.

  • PDF

Central noradrenergic mechanism in the regulation of blood pressure in SHR

  • 김연태
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.10a
    • /
    • pp.115-124
    • /
    • 1995
  • The purpose of the present study was to address whether the in vivo noradrenergic neural activities in the locus coeruleus are involved in the regulation of blood pressure. Two groups of the animals were prepared, 1) SHR and 2) age-matched normotensive control, WKY. At the age of 6 and 16 weeks, blood pressure and the releases of NE from the locus coeruleus in SHR and KWY were measured by in vivo microdialysis at three different conditions: 1) normal, 2) elevated state of blood pressure by systemic injected phenylephrine and 3) increased state of neural activity by perfused phenylephrine into the locus coeruleus. The basal release of NE of SHR were significantly higher than that of WKY, Phenylephrine treatment caused elevation of blood pressure in both SHR and WKY in dose-dependent manner. Following phenylephrine injection, the releases of NE from the locus coeruleus of SHR were significantly decreased, whereas the significant change of NE in WKY was observed in the highest dose of phenylephrine. Phenylephrine perfusion into the locus coeruleus through microdialysis probe caused pressor responses and the pressor response in SHR was greater compared with that in WKY. The results from the present study suggests that the noradrenergic nervous system in the locus coeruleus may contribute as one of the development and maintenance factors for hypertension in SHR.

  • PDF

Spinal Noradrenergic Modulation and the Role of the Alpha-2 Receptor in the Antinociceptive Effect of Intrathecal Nefopam in the Formalin Test

  • Jeong, Shin Ho;Heo, Bong Ha;Park, Sun Hong;Kim, Woong Mo;Lee, Hyung Gon;Yoon, Myung Ha;Choi, Jeong Il
    • The Korean Journal of Pain
    • /
    • v.27 no.1
    • /
    • pp.23-29
    • /
    • 2014
  • Background: Nefopam has shown an analgesic effect on acute pain including postoperative pain. The reuptake of monoamines including serotonin and noradrenaline has been proposed as the mechanism of the analgesic action of nefopam, but it remains unclear. Although alpha-adrenergic agents are being widely used in the perioperative period, the role of noradrenergic modulation in the analgesic effect of nefopam has not been fully addressed. Methods: Changes in the antinociceptive effect of intrathecal (i.t.) nefopam against formalin-elicited flinching responses were explored in Sprague-Dawley rats pretreated with i.t. 6-hydroxydopamine (6-OHDA), which depletes spinal noradrenaline. In addition, antagonism to the effect of nefopam by prazosin and yohimbine was evaluated to further elucidate the antinociceptive mechanism of i.t. nefopam. Results: Pretreatment with i.t. 6-OHDA alone did not alter the flinching responses in either phase of the formalin test, while it attenuated the antinociceptive effect of i.t. nefopam significantly during phase 1, but not phase 2. The antagonist of the alpha-2 receptor, but not the alpha-1 receptor, reduced partially, but significantly, the antinociceptive effect of i.t. nefopam during phase 1, but not during phase 2. Conclusions: This study demonstrates that spinal noradrenergic modulation plays an important role in the antinociceptive effect of i.t. nefopam against formalin-elicited acute initial pain, but not facilitated pain, and this action involves the spinal alpha-2 but not the alpha-1 receptor.

Characteristics of Central Noradrenergic Nervous System Response in SHR to Stimulation of Central ${\alpha}_2-Adrenoceptor$ (중추 ${\alpha}_2$-수용체 자극에 대한 선천성 고혈압쥐의 중추 노르아드레날린성 신경계 반응의 특성)

  • Chung, Hye-Joo;Oh, Uh-Taek;Ko, Kwang-Ho
    • YAKHAK HOEJI
    • /
    • v.33 no.6
    • /
    • pp.333-338
    • /
    • 1989
  • It has been postulated that abnormal characteristics of central noradrenergic nervous system has been implicated in the development and maintenance of hypertension in several modes of experimental hypertension including spontaneously hypertensive rats (SHR). In the present study, we attempt to determine if abnormal characteristics of central noradrenergic nervous system in SHR is caused by genetic factors or hypertensive phenomena by evaluating the changes of central adrenoceptors after long-term treatment of clonidine. Animals were divided into three groups; (1) 14 week-old SHR; (2) age-matched normotensive Wistar rats (NW); (3) DOCA-Salt induced hypertensive rats (DS). Clonidine (100 ug/kg) or vehicle was injected intraperitonealy twice a day for 15 days. Changes of ${\alpha}_1-$ and ${\alpha}_2-receptor$ desities following clonidine treatment were determiend in frontal corte, medulla oblongata and hypothalamus using 3H-WB4101 and 3H-clonidine, respectively. Densities of ${\alpha}_1$ and ${\alpha}_2-receptors$ following clonidine treatment were not changed in frontal cortex and medulla oblongate of SHR as well as DS, but increased in frontal cortex of NW and decreased in medulla oblongata of NW. On the other hand, densities of ${\alpha}_1-receptors$ were increased and densities of ${\alpha}_2-receptors$ were not changed in hypothalamus of SHR but densities of ${\alpha}_1-$ and ${\alpha}_2-receptors$ were decreased in hypothalamus of DS as well as NW. These results suggest that such differences in frontal cortex and medulla oblongata of SHR may be results of hypertensive phenomena whereas those in hypothalamus may be relevant to genetic factors of SHR.

  • PDF

Effect of Berberine on Depression- and Anxiety-Like Behaviors and Activation of the Noradrenergic System Induced by Development of Morphine Dependence in Rats

  • Lee, Bombi;Sur, Bongjun;Yeom, Mijung;Shim, Insop;Lee, Hyejung;Hahm, Dae-Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.6
    • /
    • pp.379-386
    • /
    • 2012
  • The purpose of this study was to evaluate whether berberine (BER) administration could attenuate depression- and anxiety-like behaviors and increase corticotrophin-releasing factor (CRF) and tyrosine hydroxylase (TH) expression following chronic morphine withdrawal in rats. Male rats were exposed to chronic, intermittent, escalating morphine (10~50 mg/kg) for 10 days. After the last morphine injection, depression- and anxiety-like beahvior associated with morphine discontinuation persisted for at least three days during withdrawal without any change in ambulatory activity. Daily BER administration significantly decreased immobility in the forced swimming test and increased open-arm exploration in the elevated plus maze test. BER administration also significantly blocked the increase in hypothalamic CRF expression and TH expression in the locus coeruleus (LC) and the decrease in hippocampal brain-derived neurotrophic factor (BDNF) mRNA expression. Taken together, these findings demonstrated that BER administration significantly reduced morphine withdrawal-associated behaviors following discontinuation of repeated morphine administration in rats, possibly through modulation of hypothalamic CRF and the central noradrenergic system. BER may be a useful agent for treating or alleviating complex withdrawal symptoms and preventing morphine use relapses.

Relationship between the Regulation of Blood Pressure and in vivo Noradrenergic Neural Activities in the Locus Coeruleus of Young Spontaneously Hypertensive Rats

  • Kim, Yun-Tai;Lee, Jin-Hwa;Lee, Eun-Kyung;Lee, Chung-Jae;Cheong, Jae-Hoon;Jin, Chang-Bae;Ko, Kwang-Ho
    • Biomolecules & Therapeutics
    • /
    • v.5 no.4
    • /
    • pp.336-343
    • /
    • 1997
  • The purpose of the present study was to address whether the in vivo noradrenergic neural activities in the locus coeruleus are related to the development of hypertension. Two groups of the animals were prepared, 1) young SHR and 2) age-matched normotensive control, WKY. At the age of 6 weeks, blood pressure and the releases of NE and DOPEG from the locus coeruleus in young SHR and WKY were measured by in vivo microdialysis at two different conditions; 1) normal and 2) elevated state of blood pressure by systemically injected phenylephrine. Basal releases of NE and OOPEG from the locus coeruleus were $0.415 \pm$0.089 pg/20 min and $1.311 \pm0.293$ pg/20 min in SHR and $0.204\pm0.078$ pg/20 min and $1.472\pm 0.365$ pg/20 min in WKY The basal release of NE of SHR was significantly greater than that of WKY. Phenylephrine treatment caused elevation of blood pressure in both SHR and WKY in dose-dependent manner. Following phenylephrine injection, the releases of NE and DOPEG from the locus coeruleus of SHR were significantly decreased, whereas there was no significant changes of NE in WKY. The results from the present study suggests that the noradrenergic nervous system in the locus coeruleus may contribute as one of the triggering factors for the expression of hypertension in young SHR.

  • PDF

The Neurobiology of Anxiety (불안의 생물학적 근원)

  • Seok Jeong-Ho;Kim Se-Joo;Kim Chan-Hyung
    • Anxiety and mood
    • /
    • v.1 no.1
    • /
    • pp.7-13
    • /
    • 2005
  • Anxiety is one of the basic emotions which human experiences across different cultures in the world and it can be observed in mammals. Our understanding of the neurobiology of this emotion has made some advances, even though it has not been completed, with the development and advance in the investigation method including neuroimaging, neurochemical, and genetic approaches. In this article, the neuroanatomical and neurochemical basis of anxiety is reviewed. The amygdaloid complex has been known to playa key role in processing of anxiety or fear. It has extensive afferent and/or efferent connections with cortical and subcortical structures. The mesial temporal structures including hippocampus appear to be involved in acquisition of anxiety and related behaviors. The prefrontal cortical structures appear to play important roles in conscious awareness of anxiety and in modulating anxiety and related behavior. The bed nucleus of the stria terminalis (BNST) is known to playa critical role in unconditioned fear response. The central noradrenergic system and hypothalamo-pituitary-adrenal axis are known to play important roles in modulating and expressing anxiety-related responses. Anxiety has been gathering attentions from many investigators and numerous preclinical and clinical investigations of anxiety and anxiety disorders have been done. In particular, neural plasticity in critical period and the psychobiological factors related to resilience to extreme stress and anxiety are important issues in this field.

  • PDF