• Title/Summary/Keyword: Norepinephrine

Search Result 518, Processing Time 0.032 seconds

Norepinephrine과 Angiotensin II의 혈압상승작용에 대한 Diltiazem의 영향

  • 고석태;임동윤;유강준;최홍석;심기정
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.04a
    • /
    • pp.298-298
    • /
    • 1994
  • Norepinephrine이나 angotensin II가 그 작용을 나타내는데 $Ca^{+2}$의 세포내 유입 또는 유출과 밀접한 관련이 있다는 관점에서 $Ca^{+2}$ -channel차단제중 benzothiazenpine계인 diltiazem의 norepinephrine과 angiotensin II의 혈압상승작용에 대한 영향을 가토에서 관찰하였다. Norepinephrine과 angiotensin II의 혈압상승작용에 대한 diltiazem의 영향을 관찰하는 경우는 diltiazem을 투여한 일정시간후에 norepinephrine이나 angiotensin II을 투여하여 나타나는 혈압변화를 diltiazem투여전의 norepinephrine이나 angiotensin II의 혈압상승치와 비교 검토하였다. Diltiazem은 norepinephrine과 angiotensin II의 혈압상승작용을 억재하였으나 그 억제 시간은 지속적이지 않았다. 이와는 달리 diltiazem투여 30-40분에는 norepinephrine의 혈압상승작용의 강화현상이 나타났다. Diltiazem은 교감신경말단차단제인 bethanidine이나 신경절 차단제인 chlorisondamine 처리 가토에서도 norepinephrine이나 angiotensin II의 혈압상승작용을 억제하였다.

  • PDF

Influence of Some Sympathetic Blocking Agents on Pressor Actions of Norepinephrine and Angiotensin in Rabbits. (Norepinephrine 및 Angiotensin의 승압효과(昇壓效果)에 대(對)한 교감신경단제(交感神經斷濟) 의 영향(影響))

  • Eun, Chong-Young
    • Journal of Pharmaceutical Investigation
    • /
    • v.15 no.1
    • /
    • pp.22-31
    • /
    • 1985
  • The influence of some sympathetic blocking agents on pressor actions of norepinephrine and angiotensin was investigated in rabbits. 1. Phentolamine, sympathetic ${\alpha}-blocking$ agent, blocked the pressor action of norepinephrine, but did not affect the pressor action of angiotensin 2. Chlorisondamine, autonomic ganglionic blocking agent, potentiated the both actions of norepinephrine and angiotensin. 3. Guanethidine, bethanidine and debrisoquine, sympathetic neuronal blocking agents, potentiated the action of norepinephrine, while diminished that of angiotensin. 4. Reserpine, norepinephrine depleting agent, increased the pressor response of norepinephrine, but did not influence the pressor action of angiotensin.

  • PDF

Experimental Studies on Uterine Catecholamines (Catecholamines에 관(關)하여 -제5편(第五編) : 자궁(子宮) catecholamines에 관한 실험적(實驗的) 연구(硏究)-)

  • Lee, Woo-Choo
    • The Korean Journal of Pharmacology
    • /
    • v.19 no.1
    • /
    • pp.37-60
    • /
    • 1983
  • The uterus receives adrenergic terminals from the mesenteric ganglia and considerably large amount of catecholamines have been shown to be contained in this organ. On the other hand, the activities of epinephrine, norepinephrine or adrenergic nerve on uterine motility is so complicated that many controversial results have been reporter. Recently, a large number of reports concerning the changes of uterine catecholamines content have appeared, but little is known about the role of uterine catecholamines in their activities on uterine motility. The present experiments were undertaken to determine the significance of the intrinsic uterine catecholamines in the physiology of uterus. Female albino rabbits weighing approximately 2 kg were employed in this experiment. uterine strip3 were prepared and suspended in a constant temperature $bath(38^{\circ}C)$ containing 100 ml of Locke's solution aerated with 95% oxygen and 5% carbon dioxide. Spontaneous motility was recorded on a smoked drum with an isotonic lever. The catecholamines concentration of the uterus was determined according to the Procedure described of Shore and Olin (1958). Human uterus obtained from patients was also used to determine the catecholam ines content of myometrium. Followings are summarized results. 1) On the non-pregnant rabbit uterine strips, epinephrine and norepinephrine significantly elevated the tonus and stimulated the spontaneous motility. Pretreatment with dichloroisoproterenol(DCI), an adrenergic beta-receptor blocker, enhanced the stimulatory activity of epinephrine or norepinephrine. On the other hand, pretreatment with dibenamine, an adrenergic alpha-receptor blocker, rendered the uterine muscle to exhibit inhibition after the administration of epinephrine or norepinephrine. Following the treatment with both DCI and dibenamine, epinephrine or norepinephrine produced no appreciable effects on the spontaneous motility of the uterus. These results suggest there exist both alpha and beta-adrenergic receptors in the uterine muscle and the response to epinephrine of the former is predominant over that of latter in the non-pregnant uterus of rabbits. The total catecholamines concentration of the non-pregnant uterus was $351\;m{\mu}g/g$ and the fractional concentrations of epinephrine and norepinephrine were $125\;m{\mu}g/g(35.7%)$ and $226\;m{\mu}g/g$ respectively. It is interesting to note that the catecholamines content of uterus was characterized by a high fractional corcentration of epinephrine relative to norepinephrine. 2) On the pregnant rabbit uterine strips, the effects of epinephrine and norepinephrine varied according to the period of pregnancy. The response to epinephrine of adrenergic beta receptor of uterus increased during pregnancy, and the effect of catecholamine was inhibitory in the early pregnancy but became stimulatory as the pregnancy progressed. This stimulating action on the uterine motility was found to occur through the action of norepinephrine. The uterine catecholamines concentration was markedly reduced during pregnancy. The catecholamines concentration was started to decrease in the early pregnancy, reached the lowest level in the mid-pregnancy and then started to increaae again in the late pregnancy when the total catecholamines content became the highest level of all. This increase of catefholamines in late pregnancy was chiefly due to the increase of norepinephrine. These results suggest that the uterine motility may be related to the catecholamines content, especially norepinephrine content in the uterus. 3) Bilateral oophorectomy of rabbits results in a marked shrink of the uterus in size. The spontaneous motility of the uterine segment of these animals was very weak and irregular. Norepinephrine produced inhibitory effect, whereas epinephrine was stimulatory or inhibitory effect on the uterine segment. The total catecholamines tontent in whole uterus was markedly reduced. The injection of estrogen into the oophorectornized rabbit increased the weight of uterus to approximately three times of that of oophorectornized animal. The apontaneous motility and the response to epinephrine and norepinephrine of the uterine segment were greatly enhanced. Both epinephrine and norepinephrine produced a marked stimulatory effects of the uterine motility. The uterine content of catecholamines, particularly epinephrine, was markedly increased. The injection of progesterone into the oophorectornized rabbit increaeed the weight of uterus to approximately 2.5 times of that of eophorectornized animal. The spontaneous motility of the uterine segment was weak and irregular. Epinephrine produced stimulatory effect at high concentrations but norepinephrine always prcdnced inhibitory effect on the uterine segment. The uterine content of catecholamines, particularly of norepinephrine, was markedly reduced. These results suggested that ovarian hormones play an important role not only on the growth and spontaneous norepinephrine of uterus but also on the catecholamines content and responee to epinephrine and norepinephrine of the uterus. 4) The intraperitoneal injection of reserpine(3 mg/kg) into the non-pregnant, pregnant and oophorectornieed rabbits markedly decreased the uterine content of catecholamines, particularly of the norepinephrine. The stimulatory response to epinephrine and. norepinephrine of the uterine segment of these reserpinized ratbits was markedly reduced whereas the inhibitory response to these catecholamines was enhanced. This finding further support the close relationship between the uterine catecholamines content and uterine response to epineptrire and norepinephrine. 5) In the human uterus, the concentration of epinephrine was actrally greater than that of norepinephrine and it was significantly greater during the proliferative phase of the menstrtal cycle. In the human pregnant uterus, the concentrations of toth epinephrine and ncrefinephrine were markedly reduced and showed about 45 percent rednction after 6-8 weeks of ectopic Pregnancy. At full term ana during labor, the concentrations of epinephrine and norepinephrine at placental sites were less than those found in the non-pregnant group. Of interest was the finding that the norepinephrine concentration of uterus from toxemic patients was two and half times higher than that of lower uterine segment of the nontoxemic pregnant individuals. Also the epinephrine concentraticn was slightly increaeed.

  • PDF

Effects of frequency-amplitude modulation of silver spike point electrical stimulation on epinephrine and norepinephrine in human (인체에 적용한 주파수-진폭 변조 은-침점 전기자극이 Epinephrine과 Norepinephrine에 미치는 효과)

  • Choi, Young-Deog;Lim, Jong-Soo;Kim, Soon-Ja
    • Journal of Korean Physical Therapy Science
    • /
    • v.7 no.2
    • /
    • pp.567-577
    • /
    • 2000
  • In human body, catecholamines, such as epinephrine and norepinephrine, can be increased anxiety, blood pressure and pain etc. The inhibitory effects of TENS, electroacupuncture and massage on the release of epinephrine, norepinephrine from sympathetic nerve endings has already been known. However, the effects of silver spike point stimulation on the catecholamines was not well understood. Therefore, the purpose of this study was to characterize the SSP-induced inhibitory effects of catecholamines. The following results were obtained. (1) The studies on urinary catecholamines released that the levels of epinephrine and norepinephrine of continue type SSP stimulation group were significantly lower than those in the control group in human in vivo. (2) The dose-response curves of epinephrine and norepinephrine in rat aortic smooth muscle strips were increased dose dependent manner respectively. However, the contractile response of norepinephrine in rat aortic smooth muscle strips were slightly differentiated. It is concluded that the SSP stimulation reflects to the inhibitory effects of epinephrine and norepinephrine in men. Especially, we believe that the amplitude-frequency modulation, such as continue type a)1d frequency modulation type, of SSP stimulation plays a role in regulating catecholamines.

  • PDF

The Effect of 6-Hydroxydopamine on the Anticonvulsant Activity of Clonazepam and Norepinephrine in Brain (뇌내(腦內) Norepinephrine함량변화(含量變化)와 Clonazepam의 항경련효과(抗痙攣效果)에 미치는 6-Hydroxydopamine의 영향(影響))

  • Yun, Jae-Soon;Kim, Young-Joo
    • YAKHAK HOEJI
    • /
    • v.32 no.1
    • /
    • pp.40-49
    • /
    • 1988
  • There is evidence that brain norepinephrine may play a role in experimentally induced seizures in animals. Thus the present experiments were undertaken in an attempt to explore the role of brain norepinephrine in anticonvulsant activity of clonazepam. 6-Hydroxydopamine was given to newborn rats and PTZ-induced seizures were tested $70{\sim}90$ days after birth and the rats were killed for determination of brain norepinephrine 8 days after the seizure test. Depletion of norepinephrine in the rat brain significantly potentiated the PTZ-induced convulsions and antagonized the effect of clonazepam on clonic seizures, tonic seizures and the number of seizures, but the latency to the seizure and the mortality has not been altered. However the 6-hydroxydopamine-induced antagonism of anticonvulsant action was surmountable by increasing the dose of clonazepam. These results show that brain norepinephrine may play an important role in seizure susceptability as well as in the anticonvulsant activity of clonazepam in rats.

  • PDF

Anxiety and Norepinephrine System (불안과 노어에피네프린)

  • Sim, Hyun-Bo;Yu, Bum-Hee
    • Anxiety and mood
    • /
    • v.2 no.1
    • /
    • pp.3-8
    • /
    • 2006
  • Anxiety has been suggested to be related to many neurotransmitters in brain, such as norepinephrine, serotonin, dopamine, cholecystokinin, and gamma-amino butyric acid. There are many studies to examine the relationship between anxiety and norepinephrine, and norepinephrine seems to be clearly related to the development of anxiety. We suggest that future studies to explore the pathophysiology of anxiety should be necessary, which include studies on antianxiety drugs, genetic studies, animal model studies, and brain imaging studies.

  • PDF

The characteristics of adrenergic responses in tilapis dorsal aorta (틸라피아 배대동맥의 아드레날린성 반응의 특성)

  • Choi, Dong-Lim;Chung, Joon-Ki
    • Journal of fish pathology
    • /
    • v.9 no.1
    • /
    • pp.41-51
    • /
    • 1996
  • The present study was undertaken to investigate the physiological characteristics of the adrenergic responses in the tilapia dorsal aorta. Epinephrine, norepinephrine, clonidine and methoxamine in the presence of propranolol($3{\times}10^{-6}$M), induced only endothelium-independent and concentration-dependent vasocontractions in tilapia dorsal aorta. The rank order of potency of adrenergic agonists inducing vasocontraction was epinephrine>norepinephrine>phenylephrine>clonidine>ethoxamine, Yohimbine produced a parallel shift of the concentration-vascontraction curves of epinephrine, norepinephrine, phenylephrine and clonidine to the right, while prazosin depressed the maximum responses of epinephrine and norepinephrine. Calcium-free physiological solution and verapamil markedly reduced epinephrine or norepinephrine-induced vasocontractions. These results suggest that a-adrenergic agonists produce only on endothelium-inedpenent casoconstrictions in tilapia dorsal aorta and these effect of a-adrenergic agonists, which might be associated with both calcium release from intracellular stores and calcium influx through voltage-dependent calcium channel.

  • PDF

Charateristics of Voltage Dependent Calcium Uptake and Norepinephrine Release in Hypothalamus of DOCA-salt Hypertensive Rats

  • Lee, Jean-Young;Kim, Hae-Jung;Jung, Eun-Young;Chung, Hye-Joo;Ko, Kwang-Ho
    • Biomolecules & Therapeutics
    • /
    • v.1 no.2
    • /
    • pp.171-176
    • /
    • 1993
  • Purpose of the present study was to clarify the role of noradrenergic neural activities in hypothalamus for either triggering or maintaining hypertension in deoxycorticosterone (DOCA)-salt hypertensive rats. Two groups of animals were prepared: 1) normotensive Wistar rats and 2) DOCA-salt induced hypertensive rats. Voltage dependent $^{45}Ca^{++}$ uptake, endogenous norepinephrine release, and the catecholamine content in the hypothalamus of DOCA-salt hypertensive and normotensive Wistar rats were compared. Animals at 4, 6 and 16 week-old of two groups were sacrificed by decapitation and hypothalamus was dissected out. Voltage dependent calcium uptake and norepinephrine release were determined from hypothalamic synaptosomes either in low potassium or high potassium stimulatory condition by using $^{45}Ca^{++}$ isotope and HPLC-ECD technique. Degrees of voltage dependent $^{45}Ca^{++}$ uptake and norepinephrine release in hypothalamic synaptosomes of 16-week-old DOCA-salt hypertensive rats were significantly greater than those of age matched normotensive control rats. The norepinephrine and dopamine contents of hypothalamus were about the same in two groups of animals. These results suggest that the alteration of evoked norepinephrine release related to calcium uptake in hypothalamus may play a role in the maintenance of hypertension in DOCA-salt hypertensive rats.

  • PDF

Effects of Verapamil on Norepinephrine-, Phenylephrine- and Clonidine-induced Pressor Response in Rabbits and Rats (가토(家兎) 및 Rat에서 Norepinephrine, Phenylephrine 및 Clonidine의 승압반응(昇壓反應)에 대한 Verapamil의 영향(影響))

  • Shin, Dong-ho;Choi, Soo-hyung
    • Korean Journal of Veterinary Research
    • /
    • v.28 no.1
    • /
    • pp.29-36
    • /
    • 1988
  • To examine the selectivity of verapamil, used in the cardiovascular diseases, on alpha-1 and alpha-2 adrenoceptor-induced pressor rsponses, effects of verapamil on alpha-adrenoceptor agonist-induced pressor responses were investigated in urethane-anesthetized rabbits, spinal rabbits, rats and pithed rats. To evaluate the effects of verapamil on each pressor response induced by norepinephrine, phenylephrine and clonidine, these agonists were previously injected into a ear vein, and then same procedures were performed 1~2 min after treatment with intravenous verapamil. The results are summarized as follows: 1. Intravenous verapamil produced dose-dependent depressor response in rabbits and rats. 2. Pressor responses to intravenous norepinephrine($10{\mu}g/kg$) and phenylphrine($30{\mu}g/kg$) were inhibited by pretreatment with intravenous verapamil in rabbits and no difference was noted between the degree of both inhibitions of the pressor response by verapamil. 3. Pressor responses to intravenous norepinephrine($3{\mu}g/kg$), phenylephrine($20{\mu}g/kg$) and clonidine ($300{\mu}g/kg$) were inhibited by pretreatment with intravenous verapamil in spinal rabbits. No difference was noted between the inhibition of norepinephrine-induced pressor response and that of phenylephrine-induced pressor response by verapamil. The inhibition of clonidine-induced pressor response by verapamil was more prominent than that of norepinephrine- or phenylephrine-induced pressor response. 4. Pressor responses to intravenous norepinephrine($3{\mu}g/kg$) and phenylephrine($10{\mu}g/kg$) were inhibited by pretreatment with intravenous verapairlil in rats and no difference was noted between the degree of both inhibitions of the pressor response by verapamil. 5. Pressor responses to intravenous norepinephrine ($3{\mu}g/kg$), phenylephrine($30{\mu}g/kg$) and clonidine($100{\mu}g/kg$) were inhibited by pretreatment with intravenous verapamil in pithed rats. No difference was noted between the inhibition of norepinephrine-induced pressor response and that of phenylephrine-induced pressor response by verapamil. The inhibition of clonidine-induced pressor response by verapamil was more prominent than that of norepinephrine- or phenylephrine-induced pressor response. These results suggest that verapamil significantly inhibits both pressor responses mediated by alpha-1 and alpha-2 adrenoceptors and the inhibition is greater in alpha-2 adrenoceptor-induced response than in alpha-1 adrenoceptor-induced one, and calcium channel takes part in the process of the pressor response mediated by alpha-1 adrenoceptors as well as alpha-2 adrenoceptors.

  • PDF

Effect of Strontium on Norepinephrine Induced Positive Intoropic Effect of Isolated Perfused Rat Hearts (흰쥐 적출심장의 Norepinephrine 유발 양성 변력성작용에 미치는 Strontium의 영향)

  • Kwon, Oh-Cheal;Lee, Kwang-Youn
    • Journal of Yeungnam Medical Science
    • /
    • v.5 no.2
    • /
    • pp.59-69
    • /
    • 1988
  • This study was designed to investigate the effect of substitution of strontium for calcium on mechanical activity in isolated perfused spontaneously beating rat hearts. The mechanical activity of the hearts of Langendorff's preparation in conditions of low calcium and strontium-substitution for calcium was compared. The effect of norepinephrine and verapamil were also observed in those conditions. The results were as follows : 1. In low calcium, the mechanical activity of the heart preparation was significantly reduced, but when the equimolar strontium was substituted for the reduced calcium, the activity was kept at similar level to the normal condition. 2. When equimolar strontium was substituted for the total calcium in perfusate, the heart preparation stopped its beating, and it was not restored in spite of reperfusion with normal calcium perfusate. 3. Norepinephrine-induced positive inotropic effect was inhibited in low-calcium condition especially with low concentration of norepinephrine, but not in strontium-substitution for calcium. 4. Verapamil reduced the activity of the heart both in low-calcium and strontium-substitution as well as in normal calcium conditions. From above results, it was concluded that strontium served as a substitute of calcium in maintaining mechanical activity and in responsiveness to norepinephrine, and the influx of strontium through cell membrane is inhibited by verapamil as the influx of calcium.

  • PDF