• Title/Summary/Keyword: Northern Sea Route

Search Result 36, Processing Time 0.024 seconds

Feasibility Study on Northern Sea Route and Operation of Commercial Icebreaking Vessels (북극해 항로의 전망과 쇄빙상선의 활용도에 관한 조사연구)

  • Choi, Kyung-Sik;Cho, Seong-Cheol
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.167-173
    • /
    • 2002
  • For moving cargo between the North Pacific region and Northern European ports, the Northern Sea Route, along Russia's coastline, is 35-60% shorter than the traditionally used routes through the Suez and Panama Canals. In addition to its shorter distance, there exists and extensive ports and shipping infrastructure, and the potential for developing new markets in Russia and other northern countries including Korea and Japan. These incentives attracted considerable attention from the international shipping and shipbuilding industries and have formed a cooperative international research program, called as the International Northern Sea Route Programme (INSROP). This paper is a general compilation of the historical usage, recent trade developments, the physical environment, and the practical considerations that may shape future operational mode of shipping in the NSR based on results from INSROP reports. This study focuses mainly on an operation of commercial icebreaking vessels that may be utilized along the NSR.

  • PDF

The Northern Sea Route and Operation of Icebreaking Cargo Ships (북극해 항로의 전망과 쇄빙상선의 활용)

  • 최경식;조성철
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.6
    • /
    • pp.96-100
    • /
    • 2003
  • For moving cargo between the North Pacific region and Northern European ports, the Northern Sea Route, along Russia's coastline, is 35-60% shorter than the traditionally used routes through the Suez or Panama Canals. in addition to its shorter distance, there exist extensive ports und shipping infrastructure, and the potential for developing new markets in Russia and other northern countries including Korea and Japan. These incentives attracted considerable attention from the international shipping and shipbuilding industries and have formed a cooperative international research program, called as the International Northern Sea Route Programme (INSROP) This paper is a general compilation of the historical usage, recent trade developments, the physical environment, and the practical considerations that may shape future operational mode of shipping in the NSR based on results from INSROP reports. This study focuses mainly on an operation of commercial icebreaking cargo vessels that may be utilized along the NSR.

A study on northern sea route navigation using ship handling simulation

  • Kim, Won Ouk;Youn, Dae Gwun;Lee, Young Chan;Han, Won Heui;Kim, Jong Su
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.10
    • /
    • pp.1044-1048
    • /
    • 2015
  • Recently, the viability of the Northern Sea Route has been receiving a remarkable amount of attention. Owing to global warming, glaciers in the Arctic Ocean have been melting rapidly, which has opened up navigation routes for ships with commercial as well as research purposes. At present, vessels can be economically operated along the Northern Sea Route four months of the year. However, studies have shown that the economical operating time may increase to six months by 2020 and year-round by 2030. Even though the conditions of the Northern Sea Route are extreme, the main reason for its use is that the route is shorter than the existing route using the Suez Canal, which provides an economic benefit. In addition, 25% of the world's oil reserves and 30% of its natural gas are stored in the coastal areas of the East Siberian Arctic region. Many factors are leading to the expectation of commercial navigation using the Northern Sea Route in the near future. To satisfy future demand, the International Maritime Organization established the Polar Code in order to ensure navigation safety in polar waters; this is expected to enter into force on January 1, 2017. According to the code, a ship needs to reduce its speed and analyze the ice for safe operation before entering into it. It is necessary to enter an ice field at a right angle to break the ice safely and efficiently. This study examined the operation along the course for safe navigation of the passage under several conditions. The results will provide guidelines for traffic officers who will operate ships in the Arctic Ocean.

The Northern Sea Route Transit Modeling of Icebreaking Cargo Vessels (쇄빙상선의 북극해 항로 항행 모델링)

  • Jeong, Seong-Yeob;Choi, Kyung-Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.3 s.153
    • /
    • pp.340-347
    • /
    • 2007
  • Main purpose of the study is to develop a transit model for icebreaking cargo vessels in the Northern Sea Route and to select optimum sea routes with the shortest navigation time and the lowest operation cost. This numerical model executed with basic information such as ship capabilities, transit directions and months of transit, can calculate total transit distance and elapsed time, mean speed, operation cost for each vessel. In the transit model. environment information such as the site-specific ice conditions, wave and wind states are utilized for four different months (April, June, August, and October) along the Northern Sea Route. The model also defines a necessary period of an icebreaker escort. Then the optimum sea routes are selected and visually displayed on the digital map using a commercial software ArcGIS. Usefulness of the selected sea routes is discussed.

Recent Trends of Sea Ice in the Arctic Ocean and Northern Sea Route as of July 2017 (북극해와 북해에서의 해빙 관련 최신 동향(2017년 7월까지))

  • Harun-Al-Rashid, Ahmed;Yang, Chan-Su
    • Journal of Coastal Disaster Prevention
    • /
    • v.4 no.3
    • /
    • pp.133-137
    • /
    • 2017
  • The Arctic region remains surrounded by sea ice during most of the period of the year. In the Arctic Ocean the Northern Sea Route (NSR) has been used as an important route for shipping. The arctic sea ice is decreasing since 1979; hence needs to be monitored. In this research work sea ice concentration in the recent years and sea ice concentration anomalies of few months with long term sea ice concentration are studied. The climatology of long term ice concentration data from various satellites, and the recent sea ice concentration data from Advanced Microwave Scanning Radiometer 2 (AMSR2) were used. The results show that sea ice concentration and sea ice extent in the Arctic region decreased by around 5% from 2015 to 2016, but in 2017 increased again in smaller amount in some areas like around Novaya Zemlya, and parts of the sea in between Greenland and Longyearbyen, and around Banks Island. The percentages of sea ice area in NSR for July 7 in 2015 to 2017 were 37%, 39% and 33%, respectively, indicating a large area (around ten thousand $km^2$) become ice free in 2017 compared to the previous year.

뉴스초점 - 북극해항로 경유 국제수송과 자원개발

  • Hong, Sungwon
    • Journal of the Korean Professional Engineers Association
    • /
    • v.46 no.1
    • /
    • pp.45-48
    • /
    • 2013
  • Arctic shipping via the Northern Sea Route could save about 40% of the sailing distance and shorten more than 10 days of the sailing time from Asia to Europe comparing to the existing Southern route through the Suez Canal. Since commercial voyage along the Northern Sea Route and resource development in the Arctic sea will be realized in the near future, Korea needs to challenge Arctic shipping and resource development in the strategic point of view.

  • PDF

Functional Requirements to Develop the Marine Navigation Supporting System for Northern Sea Route (북극해 안전운항 지원시스템 구축을 위한 기능적 요구조건 도출)

  • Hong, Sung Chul;Kim, Sun Hwa;Yang, Chan Su
    • Spatial Information Research
    • /
    • v.22 no.5
    • /
    • pp.19-26
    • /
    • 2014
  • International attention on the Northern Sea Route has been increased as the decreased sea-ice extents in Northern Sea raise the possibility to develop new sea routes and natural resources. However, to protect ships' safety and pristine environments in polar waters, International Maritime Organization(IMO) has been developing the Polar Code to regulate polar shipping. The marine navigation supporting system is essential for ships traveling long distance in the Northern Sea as they are affected by ocean weather and sea-ice. Therefore, to cope with the IMO Polar Code, this research proposes the functional requirements to develop the marine navigation supporting system for the Northern Sea Route. The functional requirements derived from the IMO Polar code consist of arctic voyage risk map, arctic voyage planning and MSI(Marine Safety Information) methods, based on which the navigation supporting system is able to provide dynamic and safe-economical sea route service using the sea-ice observation and prediction technologies. Also, a requirement of the system application is derived to apply the marine navigation supporting system for authorizing ships operating in the Northern Sea. To reflect the proposed system in the Polar Code, continual international exchange and policy proposals are necessary along with the development of sea-ice observation and prediction technologies.

A Study on the Legal Issues relating to Navigation through Arctic Passage (국제법상 북극항로에서의 통항제도에 관한 연구)

  • Moon, Kyu-Eun
    • Strategy21
    • /
    • s.43
    • /
    • pp.29-55
    • /
    • 2018
  • Arctic sea ice has been retreating as a result of the global warming. Arctic sea ice extent for April 2018 averaged 13.71 million square kilometers. This figure shows far less sea ice compared to the average extent from 1981 to 2010. Meanwhile, 287 times of maritime transits through the Northwest Passage have been made during the 2017 and the first ship traversed the Northern Sea Route without the assistant of ice-breaker in August 2017. Commercialization of the Arctic Passage means significant economic and strategic advantages by shortening the distance. In this article, 'Arctic Passage' means Northern Sea Route along the Arctic coast of Russia and Northwest Passage crossing Canadian Arctic Ocean. As climate changes, the potential feasibility of the Arctic Passage has been drawing international attention. Since navigation in this area remains hazardous in some aspects, IMO adopted Polar Code to promote safe, secure and sustainable shipping through the Arctic Passage. Futhermore, Russia and Canada regulate foreign vessels over the maritime zones with the authority to unilaterally exercise jurisdiction pursuant to the Article 234 of UNCLOS. The dispute over the navigation regime of the arctic passage materialized with Russia proclaimed Dmitrii Laptev and Sannikov Straits as historically belong to U.S.S.R. in the mid 1960s and Canada declared that the waters of the passage are historic internal waters in 1973 for the first time. So as to support their claims, In 1985, Russia and Canada established straight baseline including Northern Sea Route and Northwest Passage. The United States has consistently protested that the Northern Sea Route and Northwest Passage are straits used for international navigation which are subject to the regime of transit passage. Firstly, it seems that Russia and Canada do not meet the basic requirements for acquiring a historic title. Secondly, since the Law of the Sea had adopted before the establishment of straight baseline over the Russian Arctic Archipelago and the Canadian Arctic Archipelago, Ships can exercise at least the right of innocent passage. Lastly, Northern Sea Route and Northwest Passage have fulfilled the both geographical and functional criteria pertaining to the strait used for international navigation under the international law. Especially, should the arctic passage become commercially viable, it can be expected to accumulate the functional criterion. Russia and Canada regulate the ships navigate in their maritime zones by adopting the higher degree of an environmental standard than generally accepted international rules and standard mainly under the Article 234 of UNCLOS. However, the Article 234 must be interpreted restrictively as this contains constraint on the freedom of navigation. Thus, it is reasonable to consider that the Article 234 is limited only to the EEZ of coastal states. Therefore, ships navigating in the Arctic Passage with the legal status of the territorial sea and the international straits under the law of the sea have the right of innocent passage and transit passage as usual.

A Study on Recent Trends of Principal Particulars m Ice-Transiting Vessel Design (빙해 항행 선박 주요목의 변화 경향에 대한 조사 연구)

  • Choi Kyung-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.3 s.70
    • /
    • pp.77-81
    • /
    • 2006
  • In this study, design parameters of ice-transiting vessels in the world, currently in service or under construction, were collected and a database of principal particulars for each ship was established. To understand the recent design trend, ice-transiting vessels were categorized into four groups, i.e., conventional icebreakers, icebreaking tug/supply/research vessels, ice-strengthened passenger/car ferry and ice-strengthened cargo vessels. Changes in principal particulars for each group were reviewed and summarized. It was found that the most significant change in the design of ice-transiting vessels was the increment of large size commercial cargo vessels. It is believed that the recent hike of oil prices and booming of Russian economy has resulted in the need for year-round operation with bigger ships in the Baltic Sea and in the Sea of Okhotsk and also along the Northern Sea Route in Russian Arctic Sea.

A Study on Port Efficiency in the Russian Arctic as a Key Factor for Trade Growth in the Northern Sea Route (북극항로 무역 성장을 위한 러시아 북극의 항만 효율화에 관한 연구)

  • Ilana Zakharova;Hyang-Sook Lee
    • Korea Trade Review
    • /
    • v.48 no.4
    • /
    • pp.121-148
    • /
    • 2023
  • The rapid melting of Arctic sea ice has increased interest in the Northern Sea Route (NSR) as a viable alternative trade route between Europe and Asia. While extensive research has examined its competitiveness in terms of technical feasibility, safety, profitability, and environmental impact, the topic of the NSR ports remains relatively underrepresented in the literature. Hence, this study aims to contribute to the existing research by assessing the efficiency of 17 NSR ports to gain insights into their operations and identify areas for improvement using models of Data Envelopment Analysis(DEA). The obtained results show that efficient ports mainly belong to the western NSR region, with ports like Murmansk and Varandei consistently demonstrating high efficiency and constant returns to scale. Several ports, such as Onega, Arkhangelsk, Naryan-Mar, and Khatanga, showed inefficiencies in the utilization of berths and quay lengths. The findings not only contribute to academic knowledge but also offer practical implications for NSR port authorities, assisting them in making well-informed decisions regarding infrastructure development plans.