• Title/Summary/Keyword: Notch design

Search Result 237, Processing Time 0.029 seconds

An Optimal Design of Notch Shape of IPM BLDC Motor Using the Differential Evolution Strategy Algorithm (차분진화 알고리즘을 이용한 IPM형 BLDC전동기의 Notch 형상 최적화 설계 연구)

  • Shin, Pan Seok;Kim, Hong Uk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.2
    • /
    • pp.279-285
    • /
    • 2016
  • In this paper, a cogging torque of IPM(Interior Permanent Magnet)-type BLDC motor is analyzed by FE program and the optimized notch on the rotor surface is designed to minimize the torque ripple. A differential evolution strategy algorithm and a response surface method are employed to optimize the rotor notch. In order to verify the proposed algorithm, an IPM BLDC motor is used, which is 50 kW, 8 poles, 48 slots and 1200 rpm at the rated speed. Its characteristics of the motor is calculated by FE program and 4 design variables are set on the rotor notch. The initial shape of the notch is like a non-symmetric half-elliptic and it is optimized by the developed algorithm. The cogging torque of the final model is reduced to $1.5[N{\cdot}m]$ from $5.2[N{\cdot}m]$ of the initial, which is about 71 % reduction. Consequently, the proposed algorithm for the cogging torque reduction of IPM-type BLDC motor using the rotor notch design seems to be very useful to a mechanical design for reducing noise and vibration.

Optimal Design of Fluid Mount Using Artificial Life Algorithm (인공생명을 이용한 유체마운트의 최적화)

  • 안영공;송진대;양보석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.427-432
    • /
    • 2001
  • This paper shows the optimum design of the fluid engine mount. The design has been modified by trial and error because there is many design parameters that can be varied in order to obtain resonant and notch frequencies, and notch depth. It seems to be a great application for optimal design for the mount. Many combinations of parameters are possible to give us the desired resonant and notch frequencies, but the question is which combination provides the lowest resonant peak and notch depth\ulcorner In this study, the enhanced artificial life algorithm is applied to get the desired notch frequency of a fluid mount and minimize transmissibility at the notch frequency. The present hybrid algorithm is the synthesis of an artificial life algorithm with the random tabu (R-tabu) search method. The hybrid algorithm has some advantages, which is not only faster than the conventional artificial life algorithm, but also gives a more accurate solution. In addition, this algorithm can find all global optimum solutions. The results show that the performance of a conventional engine mount can be improved significantly compared with the optimized mount.

  • PDF

Practical Design Issues in a Linear Feedback Control System with a Notch Filter (선형 피드백 제어계의 노치필터 설계에 대한 실제적 문제)

  • Jin, Lihua;Kim, Young-Chol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.176-183
    • /
    • 2010
  • This paper presents some practical design issues that should be carefully considered when a notch filter is included in a linear feedback controller. A notch filter is generally used to compensate the effects of resonant modes that may result in poor performance. It is very common that the practical engineers prefer to add such a notch filter after having previously designed a feedback controller without the filter. It is known that the resulting performance by this approach is not seriously different from when a feedback controller is designed for a plant previously compensated by a notch filter. However, we will point out that there are some cases where both approaches have different performances. In order to show this, a low-order controller design using the partial model matching method has been applied to a linear time invariant (L Tn model. The results suggest that there is a tendency to achieve much better time responses in terms of reducing the overshoot and shortening the settling time, and in the frequency domain characteristics such as the sensitivity function and the stability margins when the design of a feedback controller after including a notch filter is carried out.

SimulationX®-based Modeling for Valve-Plate Notch Design of Variable Swash-Plate Axial Piston Pump (SimulationX®를 이용한 가변 사판식 액셜 피스톤 펌프의 밸브플레이트 노치 최적화에 관한 연구)

  • Lee, San Seong;Chung, Won Jee;Lim, Dong Jae;Cha, Tae Hyung;Kim, Soo Tae;Lee, Jeong Sil;Choi, Kyung Shin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.104-112
    • /
    • 2018
  • Considering the shape of a valve plate in design is important for reducing the pulsation phenomenon, which is a negative factor in pump performance. The purpose of this study is to propose an optimized method for a valve-plate V-type notch of a piston pump by modeling and simulation. The method uses $SimulationX^{(R)}$, a commercial hydraulic analysis program, and to provide data for the designing of the notch. The opening areas are determined by performing kinematic analysis of the notch part where the opening area changes rapidly. After applying the result analysis, the main effects on maximum pressure pulsation and maximum backflow according to the notch design factors are analyzed by using the full factorial method of experimental design. The optimized solutions are derived for the notch design variables, based on the analyzed data.

Design of a 170 GHz Notch Filter for the KSTAR ECE Imaging Sensor Application

  • Mohyuddin, Wahab;Woo, Dong Sik;Kim, Sung Kyun;Kim, Kang Wook;Choi, Hyun-Chul
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.8-12
    • /
    • 2016
  • A planar, light-weight, and low-cost notch filter structure is required for the KSTAR ECEI (Electron Cyclotron Emission Imaging) system to protect the mixer arrays from spurious plasma heating power. Without protection, this heating power can significantly degrade or damage the performance of the mixer array. To protect mixer arrays, a frequency selective surface (FSS) structure is the suitable choice as a notch filter to reject the spurious heating power. The FSS notch filter should be located between the lenses of the ECEI system. This paper presents a 170 GHz FSS notch filter for the KSTAR ECEI sensor application. The design of such an FSS notch filter is based on the single-sided square loop geometry, because that makes it relatively insensitive to the incident angle of incoming wave. The FSS notch filter exhibits high notch rejection with low pass-band insertion loss over a wide range of incident angles. This paper also reviews the simulated and measured results. The proposed FSS notch filter might be implemented in other millimeter-wave plasma devices.

A Study on Design of Notches in Valve Plate of Swash Plate Type Axial Piston Pumps Operated Bi-directionally (양방향 구동 사판식 액시얼 피스톤 펌프의 밸브 플레이트 노치 설계에 관한 연구)

  • Choi, Sae Ryung;Lee, Ill Yeong;Han, Sung Min;Shin, Jung Woo
    • Journal of Drive and Control
    • /
    • v.13 no.3
    • /
    • pp.39-46
    • /
    • 2016
  • Flow and pressure ripple in swash plate type piston pumps is largely dependent on the design of notches(silencing grooves) in the valve plate. In uni-directional pumps, the basic design concept for notches in the valve plate could be said to be established. It is easily deduced that the design concept for notches in uni-directional pumps can not be simply applied to bi-directional pumps requested for EHA(electric hydrostatic actuators). To carry out systematic research on technological issues regarding notch applications to bi-directional piston pumps, five notch designs are devised. The effects of the notch designs on the characteristics of the pump are investigated by numerical simulations and experiments. Through this study, basic concepts about notch design for bi-directional piston pumps are suggested.

Bending Properties and Recommened Design Criteria for Domestic Softwood with Notch (파임을 가진 국산 침엽수재의 휨성능 및 구조설계기준에 관한 연구)

  • Oh, Sei-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.6-12
    • /
    • 1998
  • Test results of domestic softwood lumber were presented to examine the notch effect of beams and compare to present AIJ(Architecture Institute of Japan) formula in notched wood member especially positioned in bottom side (tension side) of a beam. Notched lumber was tested under following condition : each specimen supported simply, and subjected to third-point loading at points of 1/3 of the span length. Notch was located opposite side to loading direction and notch depth were 1/6, 1/4, 1/3 of beam depth. Deflection and load were measured by digital dial guage each in 25kgf increment. Bending test results were as follows; Mpro/Mmax range (proportional and maxium bending moment ratio in notched beam) was 0.5 - 0.65. It was considered that maxium bending moment was about 1.5 times to proportional bending moment in notched beam and showed same tendency in the test result of ordinary wood specimens. AU standard formula for the tension side notch, Mmat = 0.6 ${\times}$ (Zo $\sigma$), the constant 0.6 was suitble for notch ratio(notch depth to beam depth) 1/6, but this ratio for 1/4, and 1/3 was not. So it is preferable to accept smaller value than 0.6 for notch ratio more than 1/3. These experiment results showed critical effect in tension side notched wood beam especially in greater than notch ratio 1.3 of wood beam. From the above results, it is recommened to revise design formula adoptable to domestic wood constructon member with tension side notched member.

  • PDF

Optimal Design of Notch Filter in Photovoltaic Inverter (태양광 인버터의 노치 필터 최적 설계)

  • Kim, Yong-Rae;Heo, Cheol-Young;Lee, Young-Kwoun;Choy, Ick;Choi, Ju-Yeop
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.2
    • /
    • pp.81-92
    • /
    • 2019
  • When Photovoltaic inverter is connected to grid and used as PVPCS (Photovoltaic Power Conditioning System), 120 Hz AC ripple occurs at the dc-link capacitor voltage. This AC ripple reduces the efficiency of PVPCS and shortens the lifetime of the capacitor. In this paper, we design a notch filter to remove AC ripple. As a result, the AC voltage ripple was removed from the dc link and the THD of the PVPCS output current with the notch filter was lowered. This notch filter is determined by the damping coefficient, the bandwidth coefficient, and the switching frequency. Among these, the switching frequency determines the switching loss and the size of the LC filter, and the PVPCS with the high switching frequency has a greater efficiency loss due to the switching loss than the efficiency improvement by the notch filter. Therefore, it is important to set the optimum switching frequency in the PVPCS with the notch filter applied. In this paper, THD and switching loss of PVPCS output current with notch filter are calculated through simulation, and cost function to calculate optimum switching frequency through data is proposed.

Design Notch to reduce Cogging Torque of Interor type Permanent Magnet Synchronous Motor (매입형 영구자석 동기 전동기의 코깅 토크 저감을 위한 노치 설계)

  • Han, Kwang-Kyu;Kang, Gyu-Hong;Ahn, Young-Gyu;Kim, Gyu-Tak
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.113-115
    • /
    • 2007
  • This paper presents a design notch to reduce cogging torque of interior type permanent magnet motor. As design notch on rotor of IPM motor, magnetic field from between rotor and teeth of state is changed. By reason of variation magnetic field, cogging torque is generated. Through Fourier formulation of magnetic field on rotor, we found position of notch and manufactured armature that is designed by optimizing analysis. The validity of the proposed design is confirmed with experiments.

  • PDF