• Title/Summary/Keyword: Nozzle Angle

Search Result 529, Processing Time 0.025 seconds

The Effect of Convergent Nozzle Angle on a Spiral Jet Flow (스파이럴 제트 유동에 미치는 축소노즐 각도의 영향)

  • Cho, Wee-Bun;Baek, Seung-Cheol;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1482-1487
    • /
    • 2004
  • In general the swirl jet is generated by the injected flow that is forced to the tangential direction. A spiral nozzle which is composed of an annular slit and a convergent nozzle, is released the spiral jet that is generated by the radial flow injection through an annular slit. The objective of the present study is to investigate the additional study that is studied a changed the convergent nozzle angle and nozzle length. In the present computation, a finite volume scheme is used to solve three dimensional Navier-Stokes equations with RNG $k-{\varepsilon}$ turbulent model. The convergent nozzle angle and the nozzle length of the spiral nozzle are varied to obtain different spiral flows inside the conical convergent nozzle. The present computational results are compared with the previous experimental data. The results obtained show that the convergent nozzle angle and the nozzle length of the spiral jet strongly influence the characteristics of the spiral jets, such as a tangential and a jet width.

  • PDF

Observations on the Near-Nozzle Behavior of an Unsteady Fuel Spray (노즐부근에서의 비정상분무 거동)

  • 구자예;정흥철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.4
    • /
    • pp.100-111
    • /
    • 1994
  • Observations on the near-nozzle behavior of an unsteady fuel spray through single cylindrical hole nozzle were made by phase Doopler anemometer and microphotographs. At the edge of the spray, droplet velocity peaked during needle opening and closing. Droplet sizes tended to be small on the edge of spray. The near-nozzle spray angle taken from the microphotographs was time-dependent, even though it increased with gas-to-liquid density ratio as expected. The near-nozzle spray angle was the greatest on the initial stage and decreased to a relatively constant value after about one third of the total injection duration regardless of the ambient gas conditions, even in the near-vaccum condition. The wider near-nozzle spray angle in the early stage is due to the flow characteristics inside the nozzle rather than aerodynamic interactions. However, once the spray was established, aerodynamic interactions are essential in the near-nozzle atomization.

  • PDF

Effect of Outer Nozzle Ejection Angle on Jet Structure issuing from Supersonic Dual Coaxial Nozzle (초음속 동축 제트의 구조에 미치는 외부노즐 분사각의 영향)

  • Baek, Seung-Cheol;Kwon, Soo-Young;Joo, Seong-Yeol;Kwon, Soon-Bum
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.426-431
    • /
    • 2001
  • This paper experimentally investigates the characteristics of dual coaxial jet issuing from inner supersonic nozzle and four kinds of outer converging nozzle of 40, 50, $60^{\circ}$ and $70^{\circ}$ in outer ejection angle. The pressure ratio of the stagnation to the exit ambient pressures in the inner supersonic nozzle of constant expansion rate is 7.5, which is corresponded to the condition of a slightly underexpanded, and that of outer nozzle is 4.0. Flow visualizations by using of shadowgraph method, impact pressure and centerline static pressure measurements are presented. It is found that the jet structure is changed significantly by the variation of outer nozzle ejection angle. Impact pressure level is lower and undulation of static pressure is higher, as the injection angle of outer jet increases.

  • PDF

COMPUTATIONAL DESIGN OF A FLUTED NOZZLE FOR ACHIEVING TARGET AERODYNAMIC PERFORMANCE (목적 공력특성 달성을 위한 플루트 노즐 전산설계)

  • Kang, Y.J.;Yang, Y.R.;Hwang, U.C.;Myong, R.S.;Cho, T.H.
    • Journal of computational fluids engineering
    • /
    • v.16 no.3
    • /
    • pp.1-7
    • /
    • 2011
  • As a preliminary design study to achieve target aerodynamic performance, this work was conducted on an original nozzle with 9 flutes in order to design a fluted nozzle with 12 flutes. The thrust and rolling moment of the nozzle with 12 flutes were analyzed using a CFD code according to the depth and rotation angle of the flutes. Based on this, a fluted nozzle with 12 flutes was optimized to yield the same thrust as that of the original nozzle with 9 flutes. The response surface method was applied for shape optimization of the fluted nozzle and design variables were selected to determine the depth angle and rotation angle of the flutes. An optimized shape that led to a thrust as strong as that of the original nozzle was obtained.

Spray Angle of Hollow Cone Liquid Sheet Discharged from Simplex Swirl Spray Nozzle (단순 와류 분무 노즐에서 분사되는 중공 원추형 액막의 분무각)

  • Koh, K.U.;Lee, S.Y.
    • Journal of ILASS-Korea
    • /
    • v.7 no.4
    • /
    • pp.1-8
    • /
    • 2002
  • This paper investigates the spray angle and the outline shape of the liquid sheet discharged from a simplex swirl nozzle. A theoretical model was proposed and the corresponding experimental data were presented for comparison. Axial and tangential velocities and thickness of the liquid sheet at the nozzle exit were also predicted. The liquid sheet thickness at nozzle exit, as well as the discharge coefficient, turned out to be a sole function of the swirl Reynolds number. However, the axial and tangential velocities at nozzle exit and the spray angle could not be expressed only with the swirl Reynolds number. The predicted outline shape and spray angle of the liquid sheet agreed reasonably with the measured data.

  • PDF

The Study for Improving the Weldability of Pure Titanium Sheet by Using Fiber Laser - The Effect of Shielding Gas Nozzle Variable - (파이버 레이저를 이용한 순 티타늄 박판의 용접특성 향상을 위한 연구 - 실드가스 노즐변수의 영향 -)

  • Kim, Jong-Do;Kim, Ji-Sung
    • Journal of Welding and Joining
    • /
    • v.34 no.5
    • /
    • pp.6-12
    • /
    • 2016
  • This study was performed bead welding of pure titanium by using fiber laser. Since titanium is very sensitive to oxidation and nitriding during welding, it is important to compose the shielding equipment compared with different material. Thus side and coaxial shield nozzle, rail and chamber type shielding equipment are widely used to protect effectively the weld during welding. Experiments were performed by changing nozzle angle and distance using side and coaxial shield nozzle. The bead colors of gold, brown, blue, purple and yellowish white were obtained by changing variables of shield nozzle, and then its weldability was investigated. As experiment result, sound and not brominated beads were formed when side nozzle angle and distance were respectively $45^{\circ}$ and 10 mm.

A Study on the Wide Reach Nozzle of Sprayer (V) -The Long Range Nozzle- (휴반용 분무기의 Nozzle에 관한 연구(V) -원거리용 Nozzle-)

  • 옹장우;이상우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.17 no.4
    • /
    • pp.3991-4000
    • /
    • 1975
  • It is the aim of this study to investigate the influence of the factors in the sprayer nozzle for the travelling distance and to get nozzle design data in relation to the nozz1e with and without swirl plate. The factors of sprayer nozzle are composed of the spraying pressure, the helical angle of swirl plate, the helical groove depth of swirl plate, the distance of vortex chamber the slope of nozz1e cap, the curvature of nozzle cap and the hole diameter of nozz1e cap. The travelling distance and the size of sprayed particle are experimeted indoors by the factorial arrange-ment according to the 5 each level of the above factors. The results of this stupy are summarized as follows; 1. In the nozzle with swirl p1ate there were remarkable significance among factors each other, while without swirl plate were no significance. 2. The helical angle and groove depth in the nozzle with swirl plate were the highest effective factors. The effect of helical angle was very remarked in the quadratic curve with minium value. 3. The correlation betweenthe travelling distance and the sprayed particle size was no high and under 250 micron in the case with swirl plate, and there was higher correlation in the case without swirl plate. 4. The new ideal development of the swirl plate using of the most effective helical angle and groove depth will probably show the possiblities to make effective travelling distance over 8 meters and more over and to make average particle diameter under 300 micron.

  • PDF

The Influence of the Diffuser Divergence Angle on the Critical Pressure of a Critical Nozzle (디퓨저 확대각이 임계노즐의 임계압력비에 미치는 영향)

  • Kim Jae Hyung;Kim Heuy Dong;Park Kyung Am
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.131-134
    • /
    • 2002
  • Compressible gas flow through a convergent-divergent nozzle is choked at the nozzle throat under a certain critical pressure ratio, and then being no longer dependent on the pressure change in the downstream flow field. In practical, the flow field at the divergent part of the critical nozzle can affect the effective critical pressure ratio. In order to investigate details of flow field through a critical nozzle, the present study solves the axisymmetric, compressible, Wavier-Stokes equations. The diameter of the nozzle throat is D=8.26mm and the half angle of the diffuser is changed between $2^{\circ}\;and\;10^{\circ}$ Computational results are compared with the previous experimental ones. The results obtained show that the divergence angle is significantly influences the critical pressure ratio and the present computations predict the experimented discharge coefficient and critical pressure ratio with a good accuracy. It is also found that a nozzle with the half angle of $4^{\circ}$ nearly predicts the theoretical critical pressure ratio.

  • PDF

The Gasoline Spray Characteristics of Tapered Nozzle for a Swirl Injector (경사노즐 선회분사기의 가솔린 분무 특성)

  • Moon, Seok-Su;Choi, Jae-Joon;Bae, Choong-Sik
    • Journal of ILASS-Korea
    • /
    • v.12 no.1
    • /
    • pp.11-17
    • /
    • 2007
  • The swirl spray for direct-injection spark-ignition (DISI) engines was investigated using a nozzle whose exit surface shape was cut with a certain tapered angle. The reason for the change in spray's characteristics at various tapered angles was explained by the data correlating the taper and flow angles. The spray tended to shift its characteristics from the symmetric to asymmetric when the tapered angle was increased; furthermore, the spray penetration and spray cone angle were also increased. When the tapered angle was greater than the $90^{\circ}$ minus flow angle, an opened hollow cone spray was formed because of the fuel impingement against the tapered surface area of the nozzle exit. This behavior indicates that the reduction in the air pressure difference between the inner and outer spray of the spray can be achieved. This behavior also promises the potential use of the tapered nozzle for the case where the independence of the spray performance from atmospheric pressure and fuel temperature is desired.

  • PDF

Case Study on Developing an Elderly Automatic Shower System

  • Kim, Jong-Hyun;Hong, Jae-Soo;Chun, Keyoung-Jin
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.5
    • /
    • pp.629-636
    • /
    • 2011
  • Objective: The aim of this study is developing an elderly automatic showering system by optimizing nozzle position and angle of water injection on ergonomics approach. Background: The elderly living in nursing home or hospital were increased by an aging population. Helping the elderly on showering is so hard. In addition, the existing showering/bathing systems are not effective because shower pattern of the elderly and washed range of nozzle were not considered. Method: Firstly, basic specification were determined by anthropometric approach. Secondly, position of nozzle and angle of water injection were determined through observation of elderly behavior on showering. And, finally, they were optimized by washing test and showering simulation. Results: On showering importance of body parts were able to analysis through observation of elderly behavior. The position of nozzle and angle of water injection was able to optimize by showering simulation. The automatic showering system was developed by considering their results. Conclusion: The most important technology of developing a showering system is the determining position of nozzle and angle of water injection, number of nozzle. It was developed by applying its results through user centered-research. Application: The user centered-research of developing products was able to apply directly to develop automatic bath, showering products etc. Further more it was available to apply senior friendly products.