• Title/Summary/Keyword: Nuclear power plant concrete

Search Result 188, Processing Time 0.039 seconds

Experimental Study on the Shrinkage Properties and Cracking Potential of High Strength Concrete Containing Industrial By-Products for Nuclear Power Plant Concrete

  • Kim, Baek-Joong;Yi, Chongku
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.224-233
    • /
    • 2017
  • In Korea, attempts have been made to develop high strength concrete for the safety and design life improvement of nuclear power plants. In this study, the cracking potentials of nuclear power plant-high strength concretes (NPP-HSCs) containing industrial by-products with W/B 0.34 and W/B 0.28, which are being reviewed for their application in the construction of containment structures, were evaluated through autogenous shrinkage, unrestrained drying shrinkage, and restrained drying shrinkage experiments. The cracking potentials of the NPP-HSCs with W/B 0.34 and W/B 0.28 were in the order of 0.34FA25 > 0.34FA25BFS25 > 0.34BFS50 > 0.34BFS65SF5 and 0.28FA25SF5 >> 0.28BFS65SF5 > 0.28BFS45SF5 > 0.28 FA20BFS25SF5, respectively. The cracking potentials of the seven mix proportions excluding 0.28FA25SF5 were lower than that of the existing nuclear power plant concrete; thus, the durability of a nuclear power plant against shrinkage cracking could be improved by applying the seven mix proportions with low cracking potentials.

Reinforced-Concrete Works Productivity Analysis on Nuclear-Power-Plant Project

  • Lim, Jin-Ho;Huh, Young-Ki;Oh, Jae-Hun;Seo, Hyeon-Taek
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.600-601
    • /
    • 2015
  • Both the importance and process of estimating Nuclear-power plant construction time and cost have increased in significance as energy user costs themselves have become more significant. In estimating construction time, few parameters are more significant than work item production rates and factors significantly affecting the rates. A standardized data collection tool was used to acquire a total of 401 data points from a S Nuclear-power plant project, for selected critical works: form-work, rebar-work, and concrete-pouring. With the data, several hypothesized drivers of the man-hour production rates and crew-day production rates were also analyzed. Findings from this study will enable industry professionals to enhance accuracy of time and cost estimation for nuclear power plant construction.

  • PDF

Safety Analysis of Concrete Treatment Workers in Decommissioning of Nuclear Power Plant

  • Hwang, Young Hwan;Kim, Si Young;Lee, Mi-Hyun;Hong, Sang Beom;Kim, Cheon-Woo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.3
    • /
    • pp.349-356
    • /
    • 2022
  • Nuclear power plant decommissioning generates significant concrete waste, which is slightly contaminated, and expected to be classified as clearance concrete waste. Clearance concrete waste is generally crushed into rubble at the site or a satellite treatment facility for practical disposal purposes. During the process, workers are exposed to radiation from the nuclides in concrete waste. The treatment processes consist of concrete cutting/crushing, transportation, and loading/unloading. Workers' radiation exposure during the process was systematically studied. A shielding package comprising a cylindrical and hexahedron structure was considered to reduce workers' radiation exposure, and improved the treatment process's efficiency. The shielding package's effect on workers' radiation exposure during the cutting and crushing process was also studied. The calculated annual radiation exposure of concrete treatment workers was below 1 mSv, which is the annual radiation exposure limit for members of the public. It was also found that workers involved in cutting and crushing were exposed the most.

Comparison and Evaluation of Chloride Penetration Resistance in Nuclear Power Plant Concrete with Different Water-to-Cement Ratios (물시멘트비가 다른 원전 콘크리트의 염화물 침투저항성 비교평가)

  • Son, Jeong Jin;Kim, Ji-Hyun;Chung, Chul-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.315-316
    • /
    • 2023
  • In the present investigation, the chloride ion penetration resistance of nuclear power plant concrete with varying water-to-cement ratios was assessed. A comparative analysis was conducted on concretes that do not incorporate supplementary cementitious materials, such as fly ash, using permanently decommissioned nuclear structures as a reference. The objective is to employ this acquired data as a fundamental resource for the evaluation of the residual service life of nuclear power plant structures in subsequent studies.

  • PDF

Study on the Coefficient of Air Convection for Concrete Mix of Nuclear Power Plant (원전 배합 콘크리트의 외기대류계수에 관한 연구)

  • Lee, Yun;Kim, Jin-Keun;Choi, Myoung-Sung;Song, Young-Chul;Woo, Sang-Kyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.148-151
    • /
    • 2004
  • The hardening of concrete after setting is accompanied with nonlinear temperature distribution caused by development of hydration heat of cement. Especially at early ages, this nonlinear distribution has a large influence on the tensile cracking. As a result, in order to predict the exact temperature distribution in concrete structures it is required to examine thermal properties of concrete. In this study, the coefficient of air convection for concrete mix of nuclear power plant, which presents thermal transfer between surface of concrete and air, was experimentally investigated with variables such as velocity of wind and types of form. The coefficient of air convection obtained from experiment increases with velocity of wind, and its dependance on wind velocity is varied with types of form. This tendency is due to a combined heat transfer system of conduction through form and convection to air. The coefficient of air convection for concrete mix of nuclear power plant obtained from this study was well agreed with the existing models.

  • PDF

A Study on the Prediction Method of Carbonation Process for Concrete Structures of Nuclear Power Plant (원전 콘크리트 구조물의 중성화 진행 예측 기법에 관한 연구)

  • Koh, Kyoung-Tack;Kim, Do-Gyeum;Kim, Sung-Wook;Cho, Myung-Sung;Son, Young-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.1
    • /
    • pp.149-158
    • /
    • 2002
  • The carbonation process is affected by both the concrete material properties such as W/C ratio, types of cement and aggregates, admixture characteristics and the environmental factors such as $CO_2$ concentration, temperature, humidity. Based on results of preliminary study on carbonation, this study is to develop a carbonation prediction model by taking account of $CO_2$ concentration, temperature, humidity ad W/C ratio among major factor affecting the carbonation process. And to constitute a model formula which correspond to the mix design of the nuclear power plant, test coefficient that correspond to the design of the nuclear power plant is obtained based on the results of accelerated carbonation test. Also a field coefficient which is obtained based on results of the field examination is included to improve the conformity of the actual structures of nuclear power plant.

Study on Mix Proportion of Self-Compacting Concrete Utilizing Polycarboxylic Acid based Admixture (폴리카본산계 혼화제를 이용한 고유동 콘크리트 배합에 관한 연구)

  • Noh, Jea-Myoung;Kwon, Ki-Joo;Nah, Hwan-Seon;Joung, Won-Seoup;Oh, Byung-Cheol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.212-215
    • /
    • 2004
  • While member sections of concrete structures of nuclear power plant are big, water-cement ratio is small. Consequently, the huge amount of heat generation and high viscosity could be occurred. These might reduce constructibility of nuclear power plant. In order to obtain improved concrete mix proportion on nuclear power plant structures, the properties of normal concrete is compared with self-compacting concrete. In addition, various mixes of self-compacting concrete utilizing polycarboxylic acid based admixture is mutually compared and estimated.

  • PDF

Seismic behavior of simplified electrical cabinet model considering cast-in-place anchor in uncracked and cracked concretes

  • Bub-Gyu Jeon;Sung-Wan Kim;Sung-Jin Chang;Dong-Uk Park;Hong-Pyo Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4252-4265
    • /
    • 2023
  • In the case of nuclear power plants near end of their design life, a reassessment of the performance of safetyrelated equipment may be necessary to determine whether to shut down or extend the operation of the power plant. Therefore, it is necessary to evaluate the level of performance decline due to degradation. Electrical cabinets, including MCC and switchgear, are representative safety-related equipment. Several studies have assessed the degradation and seismic performance of nuclear power plant equipment. Most of those researches are limited to individual components due to the size of safety-related equipment and test equipment. However, only a few studies assessed the degradation performance of electrical cabinets. The equipment of various nuclear power plants is anchored to concrete foundations, and crack in concrete foundations is one of the most representative of degradation that could be visually confirmed. However, it is difficult to find a study for analysis through testing the effect of cracks in concrete foundations on the response of electrical cabinet internal equipment fixed by anchors. In this study, using a simple cabinet model considering cast-in-place anchor in uncracked and cracked concretes, a tri-axial shaking table tests were performed and the seismic behavior were observed.

Design Optimization of Nuclear Power Plant Structures with High-Strength Reinforcements (원전구조물의 고강도철근 설계 최적화 방안)

  • Lee, Byung Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.137-138
    • /
    • 2017
  • Generally, a lot of reinforcements are used in nuclear power plant concrete structures in order to improve the structural safety, but it may cause several potential problems due to the overcrowded reinforcement, such as the degradation of concrete quality, the construction delay and the increase of construction cost. In order to resolve these problems, structural test researches and code change studies on using high-strength reinforcement (Gr.80) in unclear power plant structures are under way, and there is good progress in code change of ASM BPVC.III.2 and ACI 349. This purpose of this study is to review the code change status ASM BPVC.III.2, ACI 349 under way to use the high-strength reinforcement in nuclear power plant structures. Also I will introduce the design optimization of NPP structures with high-strength reinforcements in order to maximize the effect and minimize the problem when using the high-strength reinforcements in NPP structures.

  • PDF

Experimental study to improve drying shrinkage durability performance of Nuclear Power Plant Structure (원전 구조물의 건조수축 저감을 위한 실험적 연구)

  • Lim, Sang-Jun;Lee, Byung-Soo;Bang, Chang-Joon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.205-206
    • /
    • 2012
  • In general, nuclear power plant concrete structure's performance has been very good with the majority of identified problems initiating during construction and corrected at that time. This study is experiments to improve drying shrinkage using glycol ether-based material for the durability of nuclear power plants. Thus, this study evaluated the obtained data from a mock up test for the practical use of concrete containing glycol ether. According to the results of this study, the concrete showed resistance performance of around 40% to drying shrinkage.

  • PDF