• Title/Summary/Keyword: Numerical Prediction

Search Result 2,720, Processing Time 0.026 seconds

Role of Supercomputers in Numerical Prediction of Weather and Climate (기상 및 기후의 수치예측에 대한 슈퍼컴퓨터의 역할)

  • Park, Seon-Ki
    • Atmosphere
    • /
    • v.14 no.4
    • /
    • pp.19-23
    • /
    • 2004
  • Progresses in numerical prediction of weather and climate have been in parallel with those of computing resources, especially the development of supercomputers. Advanced techniques in numerical modeling, computational schemes, and data assimilation cloud not have been practically achieved without the aid of supercomputers. With such techniques and computing powers, the accuracy of numerical forecasts has been tremendously improved. Supercomputers are also indispensible in constructing and executing the synthetic Earth system models. In this study, a brief overview on numerical weather / climate prediction, Earth system modeling, and the values of supercomputing is provided.

Predictions of Local Circulation and Dispersion with Microscale Numerical Model (수치모의를 통한 미세규모 순환과 확산에 대한 예측)

  • 안광득;이용희;장동언;조천호
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.147-158
    • /
    • 2003
  • The prediction of wind field is very important fact in the radioactive and chemical warfare. In spite of advanced numerical weather prediction modelling and computing technology, the high resolution prediction of wind field is limited by the very high integration costs. In this study we coupled the mesoscale numerical model and microscale diagnostic numerical model with minimized integration costs. This coupled model has not only the ability of prediction of high resolution wind field including complex building but also microscale pollutant diffusion fields. For military operation this system can help making a practical and cost-effective decision in a battle field.

YSIM for City and Regional Planning ("도시 및 지역계획 지원을 위한 YSIM(Yangsuk's SIMulation)")

  • 강양석
    • Journal of Korean Society of Transportation
    • /
    • v.5 no.1
    • /
    • pp.59-74
    • /
    • 1987
  • A prediction is an indispensable element to research of Social Science, especially in Regional planning, City planning, and Transportation planning. Since 1930s, varieties of prediction methods have been developed. In the 1980s, numerical models have been used by high-developed computers. even though the numerical models can be figured mathematically, it could not be applied practically due to it's expertness and complicateness. And even professional planners often can not use their ideas which are valuable experiences in prediction process, because they are not knowledgable for numerical models. The YSIM developed by author, is available as follows. i)Numerical modeling of professional experiences ii)Providing a foundation of large-scale model iii) Understanding of research object structure The YSIM make use of matrix to identify the system structure which is similar to the Cross Impact Method. To evaluated the YSIM availabilities, it is compared with the early developed methodologies such as KSIM, QSIM, and SPIN. As the result, it was confirmed that YSIM was more accurate in the prediction. The algorithms in YSIM is programmed for use of PCs.

  • PDF

RELTSYS: A computer program for life prediction of deteriorating systems

  • Enright, Michael P.;Frangopol, Dan M.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.6
    • /
    • pp.557-568
    • /
    • 2000
  • As time-variant reliability approaches become increasingly used for service life prediction of the aging infrastructure, the demand for computer solution methods continues to increase. Effcient computer techniques have become well established for the reliability analysis of structural systems. Thus far, however, this is largely limited to time-invariant reliability problems. Therefore, the requirements for time-variant reliability prediction of deteriorating structural systems under time-variant loads have remained incomplete. This study presents a computer program for $\underline{REL}$iability of $\underline{T}$ime-Variant $\underline{SYS}$tems, RELTSYS. This program uses a combined technique of adaptive importance sampling, numerical integration, and fault tree analysis to compute time-variant reliabilities of individual components and systems. Time-invariant quantities are generated using Monte Carlo simulation, whereas time-variant quantities are evaluated using numerical integration. Load distribution and post-failure redistribution are considered using fault tree analysis. The strengths and limitations of RELTSYS are presented via a numerical example.

A Numerical Weather Prediction System for Military Operation Based on PC cluster (작전기상 지원을 위한 PC 클러스터 기반의 기상수치예보시스템)

  • 이용희;장동언;안광득;조천호
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.45-55
    • /
    • 2003
  • Weather conditions have played a vital role in a war. Many historical records reported that the miss use of weather information is the main reason of the lost a war. In this study we demonstrated the possibility of applying the numerical weather prediction system(NWPS) for military operations. The NWPS consists of PC-cluster as a super computer, data assimilation system ingesting many remote sensing observation, and graphic systems. High resolution prediction in NWPS can provide useful weather information such as wind, temperature, sea fog and so on for military operations.

Extratropical Prediction Skill of KMA GDAPS in January 2019 (기상청 전지구 예측시스템에서의 2019년 1월 북반구 중고위도 지역 예측성 검증)

  • Hwang, Jaeyoung;Cho, Hyeong-Oh;Lim, Yuna;Son, Seok-Woo;Kim, Eun-Jung;Lim, Jeong-Ock;Boo, Kyung-On
    • Atmosphere
    • /
    • v.30 no.2
    • /
    • pp.115-124
    • /
    • 2020
  • The Northern Hemisphere extratropical prediction skill of the Korea Meteorological Administration (KMA) Global Data Assimilation and Prediction System (GDAPS) is examined for January 2019. The real-time prediction skill, evaluated with mean squared skill score (MSSS) of 30-90°N geopotential height field at 500 hPa (Z500), is ~8 days in the troposphere. The MSSS of Z500 considerably decreases after 3 days mainly due to the increasing eddy errors. The eddy errors are largely explained by the eddy-phased errors with minor contribution of amplitude errors. In particular, planetary-scale eddy errors are considered as a main reason of rapidly increasing errors. It turns out that such errors are associated with the blocking highs over North Pacific (NP) and Euro-Atlantic (EA) regions. The model overestimates the blocking highs over NP and EA regions in time, showing dependence of blocking predictability on blocking initializations. This result suggests that the extratropical prediction skill could be improved by better representing blocking in the model.

Verification of the Global Numerical Weather Prediction Using SYNOP Surface Observation Data (SYNOP 지상관측자료를 활용한 수치모델 전구 예측성 검증)

  • Lee, Eun-Hee;Choi, In-Jin;Kim, Ki-Byung;Kang, Jeon-Ho;Lee, Juwon;Lee, Eunjeong;Seol, Kyung-Hee
    • Atmosphere
    • /
    • v.27 no.2
    • /
    • pp.235-249
    • /
    • 2017
  • This paper describes methodology verifying near-surface predictability of numerical weather prediction models against the surface synoptic weather station network (SYNOP) observation. As verification variables, temperature, wind, humidity-related variables, total cloud cover, and surface pressure are included in this tool. Quality controlled SYNOP observation through the pre-processing for data assimilation is used. To consider the difference of topographic height between observation and model grid points, vertical inter/extrapolation is applied for temperature, humidity, and surface pressure verification. This verification algorithm is applied for verifying medium-range forecasts by a global forecasting model developed by Korea Institute of Atmospheric Prediction Systems to measure the near-surface predictability of the model and to evaluate the capability of the developed verification tool. It is found that the verification of near-surface prediction against SYNOP observation shows consistency with verification of upper atmosphere against global radiosonde observation, suggesting reliability of those data and demonstrating importance of verification against in-situ measurement as well. Although verifying modeled total cloud cover with observation might have limitation due to the different definition between the model and observation, it is also capable to diagnose the relative bias of model predictability such as a regional reliability and diurnal evolution of the bias.

A Study on the Operational Ceiling Forecasting and its Improvement Using a Mesoscale Numerical Prediction Model over the Korean Peninsula (중규모 수치예측 모델을 이용한 한반도 시일링 예보 및 현업 운영 개선에 관한 연구)

  • Lee, Seung-Jae;Kim, Young-Chul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.1
    • /
    • pp.24-28
    • /
    • 2011
  • This paper reviews a ceiling prediction method based on a mesoscale meteorological modeling system in South Korea. The study was motivated by the tendency of higher model ceiling height than the observed in daily operational forecasts. The goal of the paper is to report an effort to improve the operational ceiling prediction skill by conducting numerical experiments controlling a model parameter. In a case experiment, increasing constant values used in the relationship between extinction coefficients and concentration showed better performance, indicating a short-term strategy for operational local ceiling forecast improvement.

Aerodynamic Noise Prediction of Subsonic Rotors

  • Lee, Jeong-Han;Lee, Soo-Gab
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.1E
    • /
    • pp.29-34
    • /
    • 1997
  • Numerical prediction of aerodynamic noise radiated by subsonic rotors are carried out. A computer program has been developed which incorporates both the discrete frequency noise as well as the broadband noise arising from the ingestion of turbulence. Acoustic analogy is used in conjunction with Homicz's formulation of turbulence ingestion noise. Formulation 1A of Farassat is used to enhance the numerical analysis performance of Ffowcs-Williams Hawkings equation by eliminating the numericla time differentiation. Homicz's trubulence ingestion noise prediction technique is used to understand the characteristics of broadband noise radiated by isotropic trubulence in gestion. Numerical predictions are carried out for a number of rotor configurations and compared with experimental data. Monopole consideration of transonic rotor agrees well with both the experimental data and the linear theory. Noise radiation characteristics of rotor at lifting hover are investigated utilizing simple blade loading obtained by thin wing section theory. By incorporating discrete noise prediction of steady loading with broadband spectrum, much better agreement with experimental data is obtained in the low frequency region. The contributions from different noise mechanisms can also be analyzed through this method.

  • PDF

Sensitivity Analysis of Numerical Weather Prediction Model with Topographic Effect in the Radiative Transfer Process (복사전달과정에서 지형효과에 따른 기상수치모델의 민감도 분석)

  • Jee, Joon-Bum;Min, Jae-Sik;Jang, Min;Kim, Bu-Yo;Zo, Il-Sung;Lee, Kyu-Tae
    • Atmosphere
    • /
    • v.27 no.4
    • /
    • pp.385-398
    • /
    • 2017
  • Numerical weather prediction experiments were carried out by applying topographic effects to reduce or enhance the solar radiation by terrain. In this study, x and ${\kappa}({\phi}_o,\;{\theta}_o)$ are precalculated for topographic effect on high resolution numerical weather prediction (NWP) with 1 km spatial resolution, and meteorological variables are analyzed through the numerical experiments. For the numerical simulations, cases were selected in winter (CASE 1) and summer (CASE 2). In the CASE 2, topographic effect was observed on the southward surface to enhance the solar energy reaching the surface, and enhance surface temperature and temperature at 2 m. Especially, the surface temperature is changed sensitively due to the change of the solar energy on the surface, but the change of the precipitation is difficult to match of topographic effect. As a result of the verification using Korea Meteorological Administration (KMA) Automated Weather System (AWS) data on Seoul metropolitan area, the topographic effect is very weak in the winter case. In the CASE 1, the improvement of accuracy was numerically confirmed by decreasing the bias and RMSE (Root mean square error) of temperature at 2 m, wind speed at 10 m and relative humidity. However, the accuracy of rainfall prediction (Threat score (TS), BIAS, equitable threat score (ETS)) with topographic effect is decreased compared to without topographic effect. It is analyzed that the topographic effect improves the solar radiation on surface and affect the enhancements of surface temperature, 2 meter temperature, wind speed, and PBL height.