• Title/Summary/Keyword: Nutrient Degradation

Search Result 153, Processing Time 0.027 seconds

Effects of Enzyme Application Method and Levels and Pre-treatment Times on Rumen Fermentation, Nutrient Degradation and Digestion in Goats and Steers

  • Hong, S.H.;Lee, B.K.;Choi, N.J.;Lee, Sang S.;Yun, S.G.;Ha, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.3
    • /
    • pp.389-393
    • /
    • 2003
  • Present study investigate the effect of enzyme supplementation, methods (applied to rumen or enzyme treated diet) compared with no enzyme diet, on rumen fermentation and apparent nutrient digestibility in a $3{\times}3$ Latin square design with three rumen cannulated Korean Native goats. In situ rumen degradation kinetics was studied in three rumen cannulated Holstein steers. Three diets were, no enzyme, 1% enzyme in rumen and 1% enzyme in diet. The enzyme was sprayed onto forage, and the forage: concentrate ratio was 30:70. Degradation kinetics was studied with three enzyme levels (0, 1 and 2%, w/w) and four pre-treatment times (0, 1, 12 and 24 h). Results suggested that enzyme application method did not affect rumen fermentation, ruminal enzyme activity and total tract apparent digestibility. Nutrient degradation rate and effective degradability of DM, NDF and ADF increased with increasing enzyme level and pre-treatment times. Degradation of nutrients was affected by enzymes levels or pre-treatment times. Therefore, it is probable that the improved degradation may be due to the supplemented exogenous hydrolytic enzymes under a certain condition.

Bio Sparging Column Experiment for Remediation of Diesel Contaminated Groundwater (디젤오염 지하수 정화를 위한 공기주입정화법 칼럼 실험)

  • Chang Soon-Woong;Lee Si-Jin;Song Jung-Hoon;Kwon Soo-Youl
    • Journal of Environmental Science International
    • /
    • v.13 no.12
    • /
    • pp.1059-1065
    • /
    • 2004
  • Bio sparging experiments were conducted in a laboratory column to investigate the potential removal of diesel contaminated groundwater. The objectives in this study were (a) to determine the extent of diesel degradation in laboratory columns under supplement of nutrient; (b) to determine the effect of variation of air flow in the removal of diesel and (c) to evaluate the potential enhancement of diesel degradation as a function of temperature. Our results showed that the nutrient supplement and higher air flow greatly enhanced diesel degradation. However, the variation of water temperature examined slightly increased degradation rate of diesel fuel.

Effect of Nutrient Nitrogen on the Degradation of Pentachlorophenol by White Rot Fungus, Phanerochaete chrysosporium

  • Chung, Nam-Hyun;Kang, Gu-Young;Kim, Gyu-Hyeok;Lee, Il-Seok;Bang, Won-Gi
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.704-708
    • /
    • 2001
  • The effect of nutrient nitrogen on the degradation of pentachlorophenol (PCP) by Phanerochaete chrysosporium in a liquid culture was investigated. PCP disappeared at almost the same rate in both nutrient nitrogen-sufficient (NS) and -limited (NL) sttionary cultures. However, more pentachloroanisole (PCA) was accumulated in the NS culture than in the NL culture. The effect of nitrogen on the degradation of PCA was also tested in both cultures. PCA disappeared faster in the NL culture than in the NS culture, indicating that the lower accumulation of PCA during the degradation of PCP in the NL culture was due to the faster degradation of PCA in the NL culture than in the NS culture. In another experiment, PCA was added to shaking cultures rather than stationary cultures to search for any other metabolite(s). While no other metabolite but PCA was found in the NS stationary culture, 2,4,5,6-tetrachloro-2,5-cyclohexadiene-1,4-dione(TCHD) was found as the only indentifiable product in the NL shaking culture. Thus, PCP would appear to be metabolized to TCHD via PCa or directly oxidized to TCHD by lignin peroxidase. Since all the above results indicate that no innocuous metabolite was formed during the degradation of PCP by the fungus, it is quite feasible to use the fungus in the biotreatment of PCP.

  • PDF

Production and Degradation of Cyanobacterial Toxin in Water Reservoir, Lake Soyang

  • Pyo, Dong-Jin;Jin, Jung-Eun
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.5
    • /
    • pp.800-804
    • /
    • 2007
  • Cyanobacterial toxins, microcystins are very potent hepatotoxins and their occurrence has been reported all over the world. They could threaten human health when toxic Microcystis occurs in water supply reservoirs. In this study, the effects of several environmental factors on production and degradation of toxins produced by cyanobacteria in Lake Soyang have been studied. A new rapid quantification method of microcystins using fluorescence for a detection signal and a lateral-flow-type immunochromatography as a separation system was used. Culture age, temperature, light intensity, pH, N-nutrient concentration, P-nutrient concentration, iron and zinc concentration were the most importantly examined factors. The toxin content was the highest on 17-18 days and at temperatures between 20℃ and 25℃, and at pH between 8.4 and 8.8.

Autophagy down-regulates NLRP3-dependent inflammatory response of intestinal epithelial cells under nutrient deprivation

  • Yun, Yewon;Baek, Ahruem;Kim, Dong-Eun
    • BMB Reports
    • /
    • v.54 no.5
    • /
    • pp.260-265
    • /
    • 2021
  • Dysregulation of inflammation induced by noninfectious stress conditions, such as nutrient deprivation, causes tissue damage and intestinal permeability, resulting in the development of inflammatory bowel diseases. We studied the effect of autophagy on cytokine secretion related to intestinal permeability under nutrient deprivation. Autophagy removes NLRP3 inflammasomes via ubiquitin-mediated degradation under starvation. When autophagy was inhibited, starvation-induced NLRP3 inflammasomes and their product, IL-1β, were significantly enhanced. A prolonged nutrient deprivation resulted in an increased epithelial mesenchymal transition (EMT), leading to intestinal permeability. Under nutrient deprivation, IL-17E/25, which is secreted by IL-1β, demolished the intestinal epithelial barrier. Our results suggest that an upregulation of autophagy maintains the intestinal barrier by suppressing the activation of NLRP3 inflammasomes and the release of their products, including pro-inflammatory cytokines IL-1β and IL-17E/25, under nutrient deprivation.

In vitro Nutrient Digestibility, Gas Production and Tannin Metabolites of Acacia nilotica Pods in Goats

  • Barman, K.;Rai, S.N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.1
    • /
    • pp.59-65
    • /
    • 2008
  • Six total mixed rations (TMR) containing 0, 4, 6, 8, 10, 12% tannin (TMR I-VI), using Accacia nilotica pods as a source of tannin, were used to study the effect of Acacia tannin on in vitro nutrient digestibility and gas production in goats. This study also investigated the degraded products of Acacia nilotica tannin in goat rumen liquor. Degraded products of tannins were identified using high performance liquid chromatography (HPLC) at different hours of incubation. In vitro digestibility of dry matter (IVDMD) and organic matter (IVOMD) were similar in TMR II, and I, but declined (p<0.05) thereafter to a stable pattern until the concentration of tannin was raised to 10%. In vitro crude protein digestibility (IVCPD) decreased (p<0.05) with increased levels of tannins in the total mixed rations. Crude protein digestibility was much more affected than digestibility of dry matter and organic matter. In vitro gas production (IVGP) was also reduced (p<0.05) with increased levels of tannins in the TMR during the first 24 h of incubation and tended to increase (p>0.05) during 24-48 h of incubation. Gallic acid, phloroglucinol, resorcinol and catechin were identified at different hours of incubation. Phloroglucinol and catechin were the major end products of tannin degradation while gallate and resorcinol were produced in traces. It is inferred that in vitro nutrient digestibility was reduced by metabolites of Acacia nilotica tannins and ruminal microbes of goat were capable of withstanding up to 4% tannin of Acacia nilotica pods in the TMR without affecting in vitro nutrient digestibility.

Nutrient Recycling : The European Experience - Review -

  • Hall, J.E.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.4
    • /
    • pp.667-674
    • /
    • 1999
  • Intensive livestock production has increased dramatically in Europe since the 1960s, particularly. in Northern and Central European countries, resulting in large increases in the nutrient pollution of surface and ground waters and in atmospheric emissions of ammonia. This has arisen due to inadequate management of the large amounts manure produced, particularly where there has been insufficient land area used for efficient nutrient reuse in crop production. Nutrient pollution from intensive livestock production has progressively degraded the quality of water resources in many parts of Europe, with eutrophication of many inland and coastal waters, as well as soil acidification and ecosystem degradation. These problems have been known for many years, and although there are various international agreements on transboundary pollution, it is largely left to individual countries to set and enforce standards. Consequently, a number of different approaches are employed, although the common feature of these is to encourage farmers to use the nutrients in animal manures efficiently according to crop requirements, which also reduces the potential for accumulation in soil and subsequent loss to the environment. This paper reviews nutrient production and use in Europe and some of the strategies employed to avoid and reduce nutrient pollution.

Poly(3-hydroxybutyrate) Degradation by Bacillus infantis sp. Isolated from Soil and Identification of phaZ and bdhA Expressing PHB Depolymerase

  • Yubin Jeon;HyeJi Jin;Youjung Kong;Haeng-Geun Cha;Byung Wook Lee;Kyungjae Yu;Byongson Yi;Hee Taek Kim;Jeong Chan Joo;Yung-Hun Yang;Jongbok Lee;Sang-Kyu Jung;See-Hyoung Park;Kyungmoon Park
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.8
    • /
    • pp.1076-1083
    • /
    • 2023
  • Poly(3-hydroxybutyrate) (PHB) is a biodegradable and biocompatible bioplastic. Effective PHB degradation in nutrient-poor environments is required for industrial and practical applications of PHB. To screen for PHB-degrading strains, PHB double-layer plates were prepared and three new Bacillus infantis species with PHB-degrading ability were isolated from the soil. In addition, phaZ and bdhA of all isolated B. infantis were confirmed using a Bacillus sp. universal primer set and established polymerase chain reaction conditions. To evaluate the effective PHB degradation ability under nutrient-deficient conditions, PHB film degradation was performed in mineral medium, resulting in a PHB degradation rate of 98.71% for B. infantis PD3, which was confirmed in 5 d. Physical changes in the degraded PHB films were analyzed. The decrease in molecular weight due to biodegradation was confirmed using gel permeation chromatography and surface erosion of the PHB film was observed using scanning electron microscopy. To the best of our knowledge, this is the first study on B. infantis showing its excellent PHB degradation ability and is expected to contribute to PHB commercialization and industrial composting.

The FMRFamide Neuropeptide FLP-20 Acts as a Systemic Signal for Starvation Responses in Caenorhabditis elegans

  • Kang, Chanhee;Avery, Leon
    • Molecules and Cells
    • /
    • v.44 no.7
    • /
    • pp.529-537
    • /
    • 2021
  • Most animals face frequent periods of starvation throughout their entire life and thus need to appropriately adjust their behavior and metabolism during starvation for their survival. Such adaptive responses are regulated by a complex set of systemic signals, including hormones and neuropeptides. While much progress has been made in identifying pathways that regulate nutrient-excessive states, it is still incompletely understood how animals systemically signal their nutrient-deficient states. Here, we showed that the FMRFamide neuropeptide FLP-20 modulates a systemic starvation response in Caenorhabditis elegans. We found that mutation of flp-20 rescued the starvation hypersensitivity of the G protein β-subunit gpb-2 mutants by suppressing excessive autophagy. FLP-20 acted in AIB neurons, where the metabotropic glutamate receptor MGL-2 also functions to modulate a systemic starvation response. Furthermore, FLP-20 modulated starvation-induced fat degradation in a manner dependent on the receptor-type guanylate cyclase GCY-28. Collectively, our results reveal a circuit that senses and signals nutrient-deficient states to modulate a systemic starvation response in multicellular organisms.

Alpine Microorganisms: Useful Tools for Low-Temperature Bioremediation

  • Margesin, Rosa
    • Journal of Microbiology
    • /
    • v.45 no.4
    • /
    • pp.281-285
    • /
    • 2007
  • Cold environments, including polar and alpine regions, are colonized by a wide diversity of micro-organisms able to thrive at low temperatures. There is evidence of a wide range of metabolic activities in alpine cold ecosystems. Like polar microorganisms, alpine microorganisms playa key ecological role in their natural habitats for nutrient cycling, litter degradation, and many other processes. A number of studies have demonstrated the capacity of alpine microorganisms to degrade efficiently a wide range of hydrocarbons, including phenol, phenol-related compounds and petroleum hydrocarbons, and the feasibility of low-temperature bioremediation of European alpine soils by stimulating the degradation capacity of indigenous microorganisms has also been shown.