• Title/Summary/Keyword: Nutrient Solution

Search Result 766, Processing Time 0.03 seconds

Development of Nutrient Solution Control System for Water Culture (수경재배(水耕栽培)의 양액관리(養液管理) 자동화(自動化) 시스템 개발(開發))

  • Lee, K.M.;Lee, J.S.;Sun, C.H.;Jang, I.J.;Song, J.G.;Koo, G.H.
    • Journal of Biosystems Engineering
    • /
    • v.15 no.4
    • /
    • pp.328-338
    • /
    • 1990
  • The objective of this study was to develop automatic systems of nutrient solution management for optimal nutrient solution environment and labor saving in water culture which enables factory crop production. In this study, an automatic control system and its driving program are developed to prepare, supply, and recover nutrient solution and to keep the optimal solution concentration level using microcomputers. Based on this study, the following conclusions are obtained: 1. The concentration measured by the system using oscillating circuit designed and built in this study, gave good agreements with the actual nutrient solution. 2. In water culture, the period of 12 hours for measuring concentration, pH, and temperature of the nutrient solution was optimum. Addition of control solution due to the decrease of the nutrient solution concentration is required in every 3 to 5 days. 3. It is estimated that the period of the whole solution change is 15 days, however, further research is needed to assure it. In addition, this period must be shortened in the future. 4. Both the hardware and software of the developed optimal nutrient solution control system in the water culture are working very well, however, it is necessary to develop a more economical one-chip micro controller to substitute for the microcomputer.

  • PDF

Composition of Nutrient Solution for Endive(Cichorium endivia L.) Hydroponics (엔디브 양액재배에 적합한 배양액 조성)

  • 조영렬;이용범
    • Journal of Bio-Environment Control
    • /
    • v.7 no.2
    • /
    • pp.123-129
    • /
    • 1998
  • This experiment was conducted to composition of nutrient solution for tore of endive hydroponics, and was compared the nutrient solution developed in the Seoul City University(SCUE) with the conventional solution of Proefstation voor Tuinbouw ender Glas. Proper compositions of nutrient solution for endive hydroponics were NO$_3$-N 15.0, NH$_4$-N 1.0, PO$_4$-P 3.0. K 10.0, Ca 5.0 and Mg 3.5 me.$\ell$$^{-1}$ , respectively SCUE and PTG standard nutrient solution showed slightly better yields among nutrient solutions. The SCUE nutrient solution and the PTG nutrient solution had no difference on growth and yield of endive Plants.

  • PDF

Development of Automatic Nutrient-Solution Control System Using a Low -Cost and Precise Liquid Metering Device (액제 정밀계량장치를 이용한 액제 자동조제 시스템개발)

  • 류관희;홍순호;이규철;이정훈;황호준
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1997.06c
    • /
    • pp.89-98
    • /
    • 1997
  • This study was conducted to develop an automatic nutrient-solution control system for small-scale growers. The nutrient-solution control system consisted of a low-cost and precise metering device and a personal computer. The system controlled electric conductivity(EC) and pH of nutrient-solution based on the time-based feedback control method with the information about temperature, EC, and pH of the nutrient-soIution. The performance of the nutrient-solution control system was evaluated through the control of EC and pH while compared with those of commercial nutrient-solution control system. Also an experimental cultivation of tomato was conducted to verify and to improve the developed system. Results of this study were as follows. 1. An automatic nutrient-solution control system based on a low-cost and precise metering device was developed. 2. The developed system controlled EC and pH within $\pm$0.05 mS/cm and $\pm$0.2 pH full scale error respectively at $24^{/circ}C$. 3. When using the commercial system, the controlled values of EC and pH of the 500l of water were 1.29 mS/cm and 6.1 pH for the setting points of 1.4 mS/cm and 6.0 pH respectively at $22^{/circ}C$. 4. The developed nutrient-solution control system showed $\pm$0.05 mS/cm of deviation from the setting EC value over the experimental cultivation period. 5. The deviation from the average values of Ca and Mg mass content in the several nutrient-solution were 0.5% and 1.8% respectively.

  • PDF

Effect of Various Composition of Nutrient Solution on Growth and Yield of Strawberry 'Maehyang' in Coir Substatrate Hydroponics (다양한 배양액 조성이 코이어 수경재배 딸기 '매향'의 생육과 수량에 미치는 영향)

  • Lee, Jeong Hun;Lee, Yong-Beom;Choi, Ki Young
    • Journal of Bio-Environment Control
    • /
    • v.26 no.3
    • /
    • pp.227-234
    • /
    • 2017
  • This study aimed to investigate the nutrient solution developed by based on nutrient-water absorption rate of strawberry 'Maehyang' by comparing growth and yield for 8 months with 5 kinds of nutrient solution with different ion composition. Strawberry plants were planted at elevated bed and supplied with five kinds of nutrient solutions (RDA), Yamazaki, PBG, University of Seoul (UOS) and NewUOS from one month onwards. Five types of nutrient solution were supplied to the strawberry plants associated with EC $1.0dS{\cdot}m^{-1}$, pH 6.0, $150{\sim}300mL{\cdot}plant^{-1}$ per day. At 60 days after planting, leaf width and leaf petiole of the strawberry plants showed significant differences among nutrient solution types and photosynthesis was higher in RDA and NewUOS nutrient solution and lower in PBG nutrient solution. The EC of the drainage on vegetative growth stage was $0.7{\sim}0.8dS{\cdot}m^{-1}$, which is lower than the supplied EC level, and to $1.0-1.2dS{\cdot}m^{-1}$, afterwards. The pH of the drainage was higher in Yamzaki solution as 6.2~6.8, while the pH of the UOS nutrient solution was lower in 5.1~5.2. Nitrate content was most absorbed in vegetative growth stage and after flower clusters development. The potassium uptake was highest at the NewUOS followed by UOS and Yamazaki nutrient solution. At six months after -planting fresh weight and dry weight of shoot and root were higher in UOS and NewUOS nutrient solution than other nutrient solutions, and the dry matter ratio was lower at 43.5% in Yamazaki nutrient solution and 30.6% in NewUOS nutrient solution than other solutions. Length, width, weight, and sugar content of the strawberries harvested from December to February were unaffected by treatment, but yield was higher in NewUOS nutrient solution due to increasing fruit number and average weight. From March to May, number of fruit was higher in Yamazaki nutrient solution. In conclusion, there was no difference in the growth of 'Maehyang' when 5 nutrient solutions were grown under hydroponics. But in order to improve the marketability, the NewUOS nutrient solution is appropriate to use from planting to February and it is suitable to use Yamazaki nutrient solution after March when temperature is high and the amount of fruit set per inflorescence.

Development of a Numerical Model for Prediction of the Cooling Load of Nutrient Solution in Hydroponic Greenhouse (수경온실의 양액 냉각부하 예측모델 개발)

  • 남상운;김문기;손정익
    • Journal of Bio-Environment Control
    • /
    • v.2 no.2
    • /
    • pp.99-109
    • /
    • 1993
  • Cooling of nutrient solution is essential to improve the growth environment of crops in hydroponic culture during summer season in Korea. This study was carried out to provide fundamental data for development of the cooling system satisfying the required cooling load of nutrient solution in hydroponic greenhouse. A numerical model for prediction of the cooling load of nutrient solution in hydroponic greenhouse was developed, and the results by the model showed good agreements with those by experiments. Main factors effecting on cooling load were solar radiation and air temperature in weather data, and conductivity of planting board and area ratio of bed to floor in greenhouse parameters. Using the model developed, the design cooling load of nutrient solution in hydroponic greenhouse of 1,000$m^2$(300pyong) was predicted to be 95,000 kJ/hr in Suwon and the vicinity.

  • PDF

Development of a Supporting System for Nutrient Solution Management in Hydroponics - II. Estimation of Electrical Conductivity(EC) using Neural Networks (양액재배를 위한 배양액관리 지원시스템의 개발 - II. 신경회로망에 의한 전기전도도(EC)의 추정)

  • 손정익;김문기;남상운
    • Journal of Bio-Environment Control
    • /
    • v.1 no.2
    • /
    • pp.162-168
    • /
    • 1992
  • As the automation of nutrient solution management proceeds in the field of hydroponics, effective supporting systems to manage the nutrient solution by computer become needed. This study was attempt to predict the EC of nutrient solution using the neural networks. The multilayer perceptron consisting of 3 layers with the back propagation learning algorithm was selected for EC prediction, of which nine variables in the input layer were the concentrations of each ion and one variable in the output layer the EC of nutrient solution. The meq unit in ion concentration was selected fir input variable in the input layer. After the 10,000 learning sweeps with 108 sample data, the comparison of predicted and measured ECs for 72 test data showed good agreements with the correlation coefficient of 0.998. In addition, the predicted ECs by neural network showed relatively equal or closer to the measured ones than those by current complicated models.

  • PDF

Effects of Waste Nutrient Solution on Growth of Chinese Cabbage (Brassica campestris L.) in Korea

  • Choi, Bong-Su;Lee, Sang-Soo;Ok, Yong-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.2
    • /
    • pp.125-131
    • /
    • 2011
  • BACKGROUND: Reuse of waste nutrient solution for the cultivation of crops could lead to considerable conservation of water resources, plant nutrients, and water quality. Therefore, this study was conducted to evaluate the potential for reducing the use of chemical fertilizer in Chinese cabbage cultivation via the reuse of waste nutrient solution as an alternative irrigation resource. METHODS AND RESULTS: The nutrients supplied in the waste nutrient solution consisted of 1474.5, 1285.1, 991.6, and 872.6 mg/L for $K+$, ${NO_3}^-$, $Ca^{2+}$ and ${SO_4}^{2-}$, respectively. At 56 days after transplanting (DAT), the leaf length of Chinese cabbage plants irrigated with the waste nutrient solution treatment was significantly higher than that of plants irrigated using a conventional groundwater treatment. Additionally, the leaf width, fresh weight and dry weight of the plants irrigated with the waste nutrient solution were similar or greater than that of plants irrigated with a conventional treatment. Furthermore, the growth of plants treated with the waste nutrient solution +25% fertilizer was the highest among all tested treatments. CONCLUSION(s): These results indicate that the waste nutrient solution can be used as an alternate water resource for crop cultivation. In addition, it can contribute to reduce the fertilizer and to obtain the higher crop yield of Chinese cabbage.

Development of an Automatic Nutrient-Solution Supply System Using Fuzzy Control (퍼지제어를 이용한 양액 자동공급 시스템 개발)

  • 황호준;류관희;조성인;이규철;김기영
    • Journal of Biosystems Engineering
    • /
    • v.23 no.4
    • /
    • pp.365-372
    • /
    • 1998
  • This study was carried out to develop a nutrient-solution mixing-and-supplying system, which used a low-cost metering device instead of expensive metering pumps and a fuzzy logic controller. A low cost and precise overflow-type metering device was developed and evaluated by testing the flow discharge for the automatic nutrient-solution mixing-and-supplying system for snail-scale hydroponic sewers. The fuzzy logic controllers, which could predict and meet the desired values of EC and supply rate of nutrient solution were developed and verified by simulation and experiment. this fuzzy logic controller, whose algorithm consists of four crisp inputs, two crisp outputs and nine rules, was developed to predict the desired value of EC and supply rate of nutrient solution and two crisp inputs, one crisp output and nine rules used to control EC to the desired values. The nutrient-solution mixing-and-supplying system showed satisfactory EC control performance with the maximum overshooting of 0.035 mS/cm and the maximum settling time of 15 minutes in case of increasing 0.7 mS/cm. also, the accuracy of the overflow-type metering device in terms of the full-scale error was 2.29% when using solenoid valve only and 0.2% when using solenoid valve and flow control valve together.

  • PDF

Development of Automatic Nutrient-Solution Controller Using Single-chip Microcomputer (원칩 마이크로 컴퓨터를 이용한 양액 자동 조제 장치의 개발)

  • 오길근;류관희;홍순호;김효중
    • Journal of Biosystems Engineering
    • /
    • v.20 no.4
    • /
    • pp.383-389
    • /
    • 1995
  • This study was conducted to develop an automatic nutrient control system for trickle application of nutrient solution. Temperature, electric conductivity(EC). pH and dissolved oxygen(DO) were selected as control variables. A controller using single-chip microcomputer was constructed. An automatic control system for nutrient solution and a controller using single-chip microcomputer with control algorithm were developed. The control system was tested, and could control temperature, EC and pH within the error ranges of $pm 0.2^{circ} pm 0.2mS/cm, pm 0.1pH$, respectively.

  • PDF

Composition of Optimal Nutrient Solution for Single-stemmed Rose 'Red velvet' in a Closed Aeroponic System

  • Kang Mu Jang;Lee Joo Hyun;Lee Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.14 no.3
    • /
    • pp.174-181
    • /
    • 2005
  • Experiments were carried out to develop an optimal nutrient solution for the single-stemmed rose (Rosa hybrida L.) 'Red velvet' in a closed aeroponic system. Plants were grown in 1/3, 1/2, 1, or 3/2 strength of the nutrient solution of National Horticultural Research Station in Japan (NHRS). Significantly less changes of pH and EC ($dS{\cdot}m^{-1}$) in the drainage were observed in 1/2 strength treatment as compared to other treatments. The $NO_3-N$, K, Ca, and Mg concentrations in the drainage solution of 1/2 strength treatment were maintained at optimal levels. These results indicated that the rose uptakes of both nutrients and water was more stable than those in other concentration. The concentration of macronutrients in nutrient solution were adjusted based on the ratio of nutrient:water (n/w) taken up by plants grown in the 1/2 strength solution. The composition of the new solution (classified the University of Seoul (UOS) solution) was as follow; $NO_3-N$ 8.8, $NH_4-N$ 0.67, P 2.0, K 4.8, Ca 4.0, Mg 2.0 $me{\cdot}L^{-1}$. To further evaluate new solution on crop growth, the rose 'Red Velvet' was grown again in l/2, 1, and 2 strength UOS solution to compare with 1.0 strength PBG (proefstion voor bloemisterij en glasgroenpe) solution. Overall the plant growth, including the stem length and number of five-leaflet leaves was higher in 1.0 strength of UOS solution than other treatments. Results presented in this study indicate that the nutrients in the UOS solution are well balanced for the single-stemmed rose in the closed aeroponic system.