• Title/Summary/Keyword: O-O bond formation

Search Result 138, Processing Time 0.053 seconds

Failure Mechanisms of Thermal Barrier Coatings Deposited on Hot Components in Gas Turbine Engines

  • Lee E. Y.;Kim J. H.;Chung S. I.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.106-111
    • /
    • 2005
  • Failure mechanisms were investigated for the two layer thermal barrier coatings consisting of NiCrAlY bond coat and $ZrO_2-8wt.\% Y_{2}O_3$ ceramic coating during cyclic oxidation. $Al_{2}O_3$ developed at the ceramic coating/bond coat interface first, followed by the Cr/Ni rich oxides such as $NiCr_{2}O_4 and Ni(Al,Cr)_{2}O_4$ during cyclic oxidation It was observed that the spalling of ceramic coatings took place primarily within the NiCrAlY bond coat oxidation products or at the interface between the bond coat oxidation products and zirconia based ceramic coating or the bond coat. It was also observed that the fracture within these oxidation products occurred with the formation of $Ni(Cr,Al)_{2}O_4$ spinel or Cr/Ni rich oxides. It was therefore concluded that the formation of these oxides was a life-limiting event for the thermal barrier coatings.

  • PDF

Failure Mechanisms for Zirconia Based Thermal Barrier Coatings

  • Lee, Eui Y.;Kim, Jong H.
    • The Korean Journal of Ceramics
    • /
    • v.4 no.4
    • /
    • pp.340-344
    • /
    • 1998
  • Failure mechanisms were investigated for the two layer thermal barrier coatings consisting of NiCrAlY bond coat and $ZrO_2$-8wt.% $Y_2O_3$ ceramic coating during cyclic oxidation. $Al_2O_3$ developed at the ceramic coating/bond coat interface first, followed by the Cr/Ni rich oxides such as $NiCr_2O_4$ and $Ni(Al, Cr)_2O_4$ during cyclic oxidation. It was observed that the spalling of ceramic coatings took place primarily within the NiCrAlY bond coat oxidation products or at the interface between the bond coat oxidation products and zirconia based ceramic coating or the bond coat. It was also observed that the fracture within these oxidation products occurred with the formation of $Ni(Cr, Al)_2O_4$ spinel or Cr/Ni rich oxides. It was therefore concluded that the formation of these oxides was a life-limiting event for the thermal barrier coatings.

  • PDF

Effect of Oxidation of Bond Coat on Failure of Thermal Barrier Coating (Bond Coat의 산화가 Thermal Barrier Coating의 파괴에 미치는 영향)

  • 최동구;최함메;강병성;최원경;최시경;김재철;박영규;김길무
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.1
    • /
    • pp.88-94
    • /
    • 1997
  • The oxidation behavior of the NiCrAlY bond coat and thermal fatigue failure in the plasma-sprayed thermal barrier coating system, ZrO2.8wt%Y2O3 top coat/Ni-26Cr-5Al-0.5Y bond coat/Hastelloy X superalloy substrate, in commercial use for finned segment of gas turbine burner were investigated. The main oxides formed in the bond coat were NiO, Cr2O3, and Al2O3. It divided the oxide distribution at this interface into two types whether an Al2O3 thin layer existed beneath ZrO2/bond coat interface before operation at high temperature or not. While a continuous layer of NiO was formed mainly in the region where the Al2O3 thin layer was present, the absence of it resulted in the formation of mixture of Cr2O3 and Al2O3 beneath NiO layer. Analyses on the fracture surface of specimen spalled by thermal cycling showed that spalling occurred mainly along the ceram-ic coat near ZrO2/bond coat oxide layer interface, but slightly in the oxide layer region.

  • PDF

Formation of Silicon nanocrystallites by ion beam assisted electron beam deposition

  • Won Chel Choi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.68-69
    • /
    • 1998
  • Nano-crystalline silicon(nc-Si) thin films were directly depposited by ion beam assisted electron beam depposition (IBAED) method. The visibe luminescence in IBAED sampples were originated from not an oxygen bond but Si nano-crystallites. And we can conclude that the ion beam would be contribute to the suppression of the Si-O bond formation.

  • PDF

Effect of Heat Treatment Method on Properties of ZnO Thin Films Deposited by RF Magnetron Sputtering

  • Kim, Deok Kyu
    • Applied Science and Convergence Technology
    • /
    • v.26 no.2
    • /
    • pp.30-33
    • /
    • 2017
  • ZnO thin films which were deposited by RF magnetron sputtering system were annealed by furnace and insitu heat treatment methods. We investigated the effect of heat treatment method on physical properties of ZnO thin films. The structural and optical properties of ZnO thin films were improved by heat treatment. Through the annealing treatment of ZnO film by furnace, the good crystallinity and ultraviolet emission were obtained. These results are attributed to the improved formation of Zn-O bond in ZnO thin film annealed at by furnace. We confirm that the formation of Zn-O bond plays an important role in obtaining the excellent structural and optical properties of ZnO thin films.

Physical Properties of Thin Films Generated by Two Kinds of Different Function (2가지 서로 다른 기능에 의해 생성된 박막의 물리적인 특성의 기원)

  • Oh, Teresa
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.487-488
    • /
    • 2008
  • SiOC films containing alkyl groups have a low dielectric constant because of the interaction between the C-H hydrogen bonds and the oxygen of high electro-negative atom. The Si-$CH_3$ in a void is broken by the $O_2$, therefore the strength of CH bond in Si-O-O-$CH_3$ bond increases. The Si-O-O-$CH_3$ bond is broken by nucleophilic attack due to Si atom, again. The elongation of C-H bond causes the red shift, and the compression of C-H bond causes the blue shift. Among these chemical shifts, the blue shift from $1000\;cm^{-1}$ to $1250\;cm^{-1}$ was related with the formation of pores. If the oxygen is deficient condition, the methylradicals of the electron-rich substitution group terminate easily the Si-O-Si cross-link, and the pore is originated from the cross-link breakdown due to much methyl radicals of Si-$CH_3$. The dielectric constant of the films decreases due to pore generation.

  • PDF

Relationship between Dielectric Constant and Increament of Si-O bond in SiOC Film (SiOC 박막에서 Si-O 결합의 증가와 유전상수의 관계)

  • Oh, Teresa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4468-4472
    • /
    • 2010
  • SiOC films made by the inductively coupled plasma chemical vapor deposition were researched the relationship between the dielectric constant and the chemical shift. SiOC film obtained by plasma method had the main Si-O-C bond with the molecule vibration mode in the range of $930{\sim}1230\;cm^{-1}$ which consists of C-O and Si-O bonds related to the cross link formation according to the dissociation and recombination. The C-O bond originated from the elongation effect by the neighboring highly electron negative oxygen atoms at terminal C-H bond in Si-$CH_3$ of $1270cm^{-1}$. However, the Si-O bond was formed from the second ionic sites recombined after the dissociation of Si-$CH_3$ of $1270cm^{-1}$. The increase of the Si-O bond induced the redshift as the shift of peak in FTIR spectra because of the increase of right shoulder in main bond. These results mean that SiOC films become more stable and stronger than SiOC film with dominant C-O bond. So it was researched that the roughness was also decreased due to the high degree of amorphous structure at SiOC film with the redshift after annealing.

The Effect of Oxide Formation on the Lifetime of Plasma Sprayed or EB-PVD Thermal Barrier Coatings (플라즈마 용사 및 EB-PVD에 의한 열벽코팅 수명에 대한 산화물 생성의 영향)

  • ;R.D.Sisson;Jr
    • Journal of the Korean institute of surface engineering
    • /
    • v.27 no.2
    • /
    • pp.91-98
    • /
    • 1994
  • For the plasma sprayed as well as the EB-PVD thermal barrier coatings, the fracture paths within the oxidation products developed at the interface between the partially stabilized zirconia ceramic coating and NiCoCrAlY bond coat during cyclic thermal oxidation has been investigated. It was observed that the fracture in the oxidation products primarily took place within the oxide such as $Ni_{1-x}Co_3(Al_,Cr)_2O_4$ or at the interface between the oxide and $Al_2O_3$. It was found that Al2O3 developed first, followed by the Ni/Co/Cr rich oxides such as ,,$Ni_{1-x}Co_x(Al_,Cr)_2O_4$ $Cr_2O_3$and NiO at the interface between the ceramic coating and the bond coat in a cyclic high temperature environment. It was therfore concluded that the formation of the oxide containing Ni, Cr and Co was a life-limiting event for thermal barrier coatings during cyclic thermal oxidation.

  • PDF

Water Oxidation Mechanism for 3d Transition Metal Oxide Catalysts under Neutral Condition

  • Seo, Hongmin;Cho, Kang Hee;Ha, Heonjin;Park, Sunghak;Hong, Jung Sug;Jin, Kyoungsuk;Nam, Ki Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Electrochemical water splitting to produce hydrogen energy is regarded as a promising energy conversion process for its environmentally friendly nature. To improve cell efficiency, the development of efficient water oxidation catalysts is essentially demanded. For several decades, 3d transition metal oxides have been intensively investigated for their high activity, good durability and low-cost. This review covers i) recent progress on 3d transition metal oxide electrocatalysts and ii) the reaction mechanism of oxygen evolving catalysis, specifically focused on the proposed pathways for the O-O bond formation step.

Substituent Effects on the Leaving Groups in Benzyl Arenesulfonates (Benzyl Arenesulfonate의 離脫基의 置換基效果에 關한 硏究 (第 1 報))

  • Yoh Soo Dong
    • Journal of the Korean Chemical Society
    • /
    • v.19 no.2
    • /
    • pp.116-122
    • /
    • 1975
  • Determination has been made of the kinetics of the reaction of benzyl arenesulfonates with pyridine in acetone. The substituent effects of the leaving groups in benzyl arenesulfonates are correlated by Hammett equations, with the exception of p-MeO and $p-NO_2$ groups, where the electron attracting substituents in the benzyl arenesulfonate increase the rate. The substituent effects of the leaving groups are as expected due to the nucleophilic attack of amine on the benzyl carbon atom. This can be understood in terms of changes in bond formation (C-N) and bond breaking (C-O) in the transition state with charges in electron-attracting ability of the substituents. The predicted substituent effects may indicate a small increase in bond formation and thus a tighter transition state, in benzyl p-bromobenzene sulfonate than in benzyl p-nitrobenzenesulfonate. Predicting made by Thornton concerning the substituent effects on $S_N2$ transition state structures agrees with the changes in bond formation and bond breaking.

  • PDF