• Title/Summary/Keyword: OTS solution

Search Result 19, Processing Time 0.023 seconds

Self Assembled Patterns of Ag Using Hydrophobic and Hydrophilic Surface Characteristics of Glass (유리기판의 친수.소수 상태 변화를 이용한 자기정렬 Ag Pattern 형성 연구)

  • Choo Byoung-Kwon;Choi Jung-Su;Kim Gun-Jeong;Lee Sun-Hee;Park Kyu-Cang;Jang Jin
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.4
    • /
    • pp.354-359
    • /
    • 2006
  • Recently, the interest in lithography without photo exposure has been increased compare to the conventional photolithography in nano meter and micrometer size patterning area. We studied a self aligned dipping of Ag solution through micro contact printing (${\mu}-CP$) with octadecyltrichlorosilane (OTS) treated polydimethylsiloxane (PDMS) soft mold. The OTS monolayer on the patterned PDMS was formed by dipping it into OTS solution. We transferred the OTS monolayer from PDMS mold to the glass. The OTS monolayer changed the surface energy from hydrophilic surface to hydrophobic surface, And then we made self aligned Ag solution patterns just after dipping the substrate, using adhesion difference of Ag solution between OTS treated hydrophobic area and non-OTS treated hydrophilic area. We finally get the Ag patterns through only dip-coating after the ${\mu}-CP$ process. And we observed surface energies on the glass substrate through the contact angle measurements as time goes on.

Electrical properties of $SiO_2$ thin film by OTS treatment (OTS 처리된 $SiO_2$ 박막의 전기적인 특성)

  • Kim, Jong-Wook;Oh, Teresa;Kim, Hong-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.169-170
    • /
    • 2007
  • 기존 사용되어온 절연막인 $SiO_2$ 의 절연특성이 신호의 간섭 등의 문제가 있어서 절연특성을 좋게 하기 위해 낮은 유전상수와 비결정질의 절연막을 요구하고 있다. 본 연구에서는 혼합된 OTS solution으로 처리된 $SiO_2$ 절연막이 OTS 함유량 증가에 따른 전기적인 특성을 조사하였다. 전압-전류 특성 곡선에 의한 누설전류 증가랑이 OTS 함유량 증가에 따라 비례적으로 증가하지 않았으며 0.7% 처리 농도에서 누설전류가 가장 적게 나타났다.

  • PDF

Programmed APTES and OTS Patterns for the Multi-Channel FET of Single-Walled Carbon Nanotubes (SWCNT 다중채널 FET용 표면 프로그램된 APTES와 OTS 패턴을 이용한 공정에 대한 연구)

  • Kim, Byung-Cheul;Kim, Joo-Yeon;An, Ho-Myoung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.1
    • /
    • pp.37-44
    • /
    • 2015
  • In this paper, we have investigated a selective assembly method of single-walled carbon nanotubes (SWCNTs) on a silicon substrate using only photolithographic process and then proposed a fabrication method of field effect transistors (FETs) using SWCNT-based patterns. The aminopropylethoxysilane (APTES) patterns, which are formed for positively charged surface molecular patterns, are utilized to assemble and align millions of SWCNTs and we can more effectively assemble on a silicon (Si) surface using this method than assembly processes using only the 1-octadecyltrichlorosilane (OTS). We investigated a selective assembly method of SWCNTs on a Si surface using surface-programmed APTES and OTS patterns and then a fabrication method of FETs. photoresist(PR) patterns were made using photolithographic process on the silicon dioxide (SiO2) grown Si substrate and the substrate was placed in the OTS solution (1:500 v/v in anhydrous hexane) to cover the bare SiO2 regions. After removing the PR, the substrate was placed in APTES solution to backfill the remaining SiO2 area. This surface-programmed substrate was placed into a SWCNT solution dispersed in dichlorobenzene. SWCNTs were attracted toward the positively charged molecular regions, and aligned along the APTES patterns. On the contrary, SWCNT were not assembled on the OTS patterns. In this process, positively charged surface molecular patterns are utilized to direct the assembly of negatively charged SWCNT on SiO2. As a result, the selectively assembled SWCNT channels can be obtained between two electrodes(source and drain electrodes). Finally, we can successfully fabricate SWCNT-based multi-channel FETs by using our self-assembled monolayer method.

Surface Characteristics of Silicon Substrates Coated with Octadecyltrichlorosilane (옥타데실트리클로로실란 코팅에 의한 실리콘 표면 특성 변화)

  • 유희재;김수경;김진홍;강호종
    • Polymer(Korea)
    • /
    • v.27 no.6
    • /
    • pp.555-561
    • /
    • 2003
  • The self-assembled monolayer coating of octadecyltrichlorosilane (OTS) on the silicon based MEMS was investigated and surface characteristics were considered as a function of coating conditions and reagent composition. The sulfuric peroxide mixture (SPM) solution was used to form -OH group which caused the hydrophilic characteristic on silicon surftce. Highest hydrophilicity was obtained by SPM solution with 85% acid content at room temperature. OTS was applied on the silicon surface by means of self-assembled monolayers (SAMs) coating. It was found that sol-gel reaction was took place between -OH group on the silicon surface and -Cl group in OTS. As a result, the contact angle increased due to the increase of hydrophobicity by Si-O bonding of SAMs. Sol-gel reaction could be controlled by coating conditions as well as reagent composition in OTS coating solution.

Response of Nutrient Solution and Photosynthetic Photon Flux Density for Growth and Accumulation of Antioxidant in Agastache rugosa under Hydroponic Culture Systems (식물공장에서 양액의 종류 및 PPFD가 배초향의 생장 및 항산화 물질에 미치는 영향)

  • Kim, Sung Jin;Bok, Kwon Jung;Lam, Vu Phong;Park, Jong Seok
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.249-257
    • /
    • 2017
  • Agastache rugosa, is a perennial medicinal plant commonly used in Chinese herbalism, and may have anti-atherogenic and antibacterial properties. Here in this study, we investigated the growth and variations in antioxidant contents of A. rugosa in response to nutrient solution and photosynthetic photon flux density (PPFD) with artificial lighting for a hydroponics culture. Fluorescent light at 150, and $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD with a 16/8 (light/dark) photoperiod, combined with four different nutrient solutions [developed by Horticulture experiment station in Japan (HES), University of Seoul (UOS), Europe vegetable research center (EVR), Otsuka-house 1A (OTS)], were used in a hydroponics culture system for 6 weeks. The shoot and root dry weights of A. rugosa grown with the OTS were significantly higher than those of other nutrient solutions. The amount of tilianin was the highest grown with the OTS, followed by EVR, HES, and UOS. Total acacetin content was the highest in A. rugosa grown under EVR which was statistically similar with OTS. The A. rugosa grown under $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD produced higher fresh weight and both acacetin and tilianin contents than that grown under $150{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD. The present results suggested that OTS along with $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD could be an optimum growing condition for better growth and higher accumulation of tilianin and acacetin contents in A. rugosa with hydroponic culture systems in a plant factory.

Preparation of Superhydrophobic Surfaces Using Agglomeration Control of Silica Nanoparticles by Organic Solvent and Non-fluoride Self-assembled Monolayers (유기용매에 의한 실리카 나노입자의 응집조절과 비불소계 자기조립박막을 이용한 초발수 표면 제조)

  • Kim, Taeyoon;Jeong, Jin;Chung, Ildoo
    • Journal of Adhesion and Interface
    • /
    • v.16 no.3
    • /
    • pp.116-121
    • /
    • 2015
  • In this study, octadecyltrichlorosilane (OTS) has been used to replace fluoro-silanes which are much more expensive than OTS. In order to improve the mechanical and adhesive properties of coating layers, inorganic binders were separately synthesized based on sol-gel reaction in acidic condition. Since the synthesized silica nanoparticles gave only nano-scaled roughness, superhydrophobicity is not well obtained. Here, we present a new simple approach by intentionally inducing particle aggregation in the solution which is controlled by adjusting solvent amount. With selecting suitable sizes of silica nanoparticles, superhydrophobic surfaces were obtained with increasing the amount of organic solvents after surface hydrophobization using OTS, and an extremely water-repellent behavior was observed with zero sliding angle. This superhydrophobicity was achived only for the dielectric constant lower than 25, regardless of the composition of solvent, meaning that the dielectric constant could be an excellent indicator for fabricating superhydrobic surfaces induced by particle aggregation in the solution.

A Study on the Leakage Current Voltage of Hybrid Type Thin Films Using a Dilute OTS Solution

  • Kim Hong-Bae;Oh Teresa
    • Journal of the Semiconductor & Display Technology
    • /
    • v.5 no.1 s.14
    • /
    • pp.21-25
    • /
    • 2006
  • To improve the performance of organic thin film transistor, we investigated the properties of gate insulator's surface according to the leakage current by I-V measurement. The surface was treated by the dilute n-octadecyltrichlorosilane solution. The alkyl group of n-octadecyltrichlorosilane induced the electron tunneling and the electron tunneling current caused the breakdown at high electric field, consequently shifting the breakdown voltage. The 0.5% sample with an electron-rich group was found to have a large leakage current and a low barrier height because of the effect of an energy barrier lowered by, thermionic current, which is called the Schottky contact. The surface properties of the insulator were analyzed by I-V measurement using the effect of Poole-Frankel emission.

  • PDF

All printed organic thin film transistors with high-resolution patterned Ag nanoparticulate electrode using non-relief pattern lithography

  • Eom, You-Hyun;Park, Sung-Kyu;Kim, Yong-Hoon;Kang, Jung-Won;Han, Jeong-In
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.568-570
    • /
    • 2009
  • Octadecyltrichlorosilane (OTS) self-assembled monolayer was selectively patterned by deep ultraviolet exposure, resulting in differential surface state, hydrophilic area with OTS hydrophobic surroundings. High-resolution (<10 ${\mu}m$) nanoparticulate Ag electrodes and organic semiconductors were patterned from simple dip-casting and ink-jetting on the pre-patterned hydrophilic surface, forming all solution-processed organic thin film transistors. The devices typically have shown a mobility of 0.065 $cm^2/V{\cdot}s$ and on-off current ratio of $8{\times}10^5$.

  • PDF

Patterning of conducting polymer at micron- scale using a selective surface treatment

  • Lee, Kwang-Ho;Kim, Sang-Mook;Kim, Ki-Seok;Song, Sun-Sik;Kim, Eun-Uk;Jung, Hee-Soo;Kim, Jin-Ju;Jung, Gun-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.834-836
    • /
    • 2008
  • We demonstrated micro-scale conducting polymer patterning based on a selective surface treatment. A substrate with a patterned photoresist was immersed into OTS (Octadecyltrichlosilnae) solution. The protected substrate areas were hydrophilic after removing the PR resist, where a conducting polymer solution was coated selectively by spin-coating method.

  • PDF

Additive Fabrication of Patterned Multi-Layered Thin Films of Ta2O5 and CdS on ITO Using Microcontact Printing Technique

  • Lee, Jong-Hyeon;Woo, Soo-Yeun;Kwon, Young-Uk;Jung, Duk-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.2
    • /
    • pp.183-188
    • /
    • 2003
  • The micro-patterning of multi-layered thin films containing CdS and $Ta_2O_5$ layers on ITO substrate with various structures was successfully obtained by combining three different techniques: chemical solution depositions, sol-gel, and microcontact printing (μCP) methods using octadecyltrichlorosilane (OTS) as the organic thin layer template. $Ta_2O_5$ layer was prepared by sol-gel casting and CdS one obtained by chemical solution deposition, respectively. Parallel and cross patterns of multi-layers with $Ta_2O_5$ and CdS films were fabricated additively by successive removal of OTS layer pre-formed. This study presents the designed architectures consisting of the two types of feature having horizontal dimensions of 170 ㎛ and 340 ㎛ with constant thickness ca. 150 nm of each deposited materials. The thin film lay-out of the cross-patterning is composed of four regions with chemically different layer compositions, which are confirmed by Auger electron microanalysis.