• Title/Summary/Keyword: Object Region Detection

Search Result 284, Processing Time 0.029 seconds

A Novel Approach for Object Detection in Illuminated and Occluded Video Sequences Using Visual Information with Object Feature Estimation

  • Sharma, Kajal
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.2
    • /
    • pp.110-114
    • /
    • 2015
  • This paper reports a novel object-detection technique in video sequences. The proposed algorithm consists of detection of objects in illuminated and occluded videos by using object features and a neural network technique. It consists of two functional modules: region-based object feature extraction and continuous detection of objects in video sequences with region features. This scheme is proposed as an enhancement of the Lowe's scale-invariant feature transform (SIFT) object detection method. This technique solved the high computation time problem of feature generation in the SIFT method. The improvement is achieved by region-based feature classification in the objects to be detected; optimal neural network-based feature reduction is presented in order to reduce the object region feature dataset with winner pixel estimation between the video frames of the video sequence. Simulation results show that the proposed scheme achieves better overall performance than other object detection techniques, and region-based feature detection is faster in comparison to other recent techniques.

Realtime Object Region Detection Robust to Vehicle Headlight (차량의 헤드라이트에 강인한 실시간 객체 영역 검출)

  • Yeon, Sungho;Kim, Jaemin
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.2
    • /
    • pp.138-148
    • /
    • 2015
  • Object detection methods based on background learning are widely used in video surveillance. However, when a car runs with headlights on, these methods are likely to detect the car region and the area illuminated by the headlights as one connected change region. This paper describes a method of separating the car region from the area illuminated by the headlights. First, we detect change regions with a background learning method, and extract blobs, connected components in the detected change region. If a blob is larger than the maximum object size, we extract candidate object regions from the blob by clustering the intensity histogram of the frame difference between the mean of background images and an input image. Finally, we compute the similarity between the mean of background images and the input image within each candidate region and select a candidate region with weak similarity as an object region.

Salient Object Detection via Adaptive Region Merging

  • Zhou, Jingbo;Zhai, Jiyou;Ren, Yongfeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4386-4404
    • /
    • 2016
  • Most existing salient object detection algorithms commonly employed segmentation techniques to eliminate background noise and reduce computation by treating each segment as a processing unit. However, individual small segments provide little information about global contents. Such schemes have limited capability on modeling global perceptual phenomena. In this paper, a novel salient object detection algorithm is proposed based on region merging. An adaptive-based merging scheme is developed to reassemble regions based on their color dissimilarities. The merging strategy can be described as that a region R is merged with its adjacent region Q if Q has the lowest dissimilarity with Q among all Q's adjacent regions. To guide the merging process, superpixels that located at the boundary of the image are treated as the seeds. However, it is possible for a boundary in the input image to be occupied by the foreground object. To avoid this case, we optimize the boundary influences by locating and eliminating erroneous boundaries before the region merging. We show that even though three simple region saliency measurements are adopted for each region, encouraging performance can be obtained. Experiments on four benchmark datasets including MSRA-B, SOD, SED and iCoSeg show the proposed method results in uniform object enhancement and achieve state-of-the-art performance by comparing with nine existing methods.

Object detection within the region of interest based on gaze estimation (응시점 추정 기반 관심 영역 내 객체 탐지)

  • Seok-Ho Han;Hoon-Seok Jang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.3
    • /
    • pp.117-122
    • /
    • 2023
  • Gaze estimation, which automatically recognizes where a user is currently staring, and object detection based on estimated gaze point, can be a more accurate and efficient way to understand human visual behavior. in this paper, we propose a method to detect the objects within the region of interest around the gaze point. Specifically, after estimating the 3D gaze point, a region of interest based on the estimated gaze point is created to ensure that object detection occurs only within the region of interest. In our experiments, we compared the performance of general object detection, and the proposed object detection based on region of interest, and found that the processing time per frame was 1.4ms and 1.1ms, respectively, indicating that the proposed method was faster in terms of processing speed.

Stop Object Method within Intersection with Using Adaptive Background Image (적응적 배경영상을 이용한 교차로 내 정지 객체 검출 방법)

  • Kang, Sung-Jun;Sur, Am-Seog;Jeong, Sung-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2430-2436
    • /
    • 2013
  • This study suggests a method of detecting the still object, which becomes a cause of danger within the crossroad. The Inverse Perspective Transform was performed in order to make the object size consistent by being inputted the real-time image from CCTV that is installed within the crossroad. It established the detection area in the image with the perspective transform and generated the adaptative background image with the use of the moving information on object. The detection of the stop object was detected the candidate region of the stop object by using the background-image differential method. To grasp the appearance of truth on the detected candidate region, a method is proposed that uses the gradient information on image and EHD(Edge Histogram Descriptor). To examine performance of the suggested algorithm, it experimented by storing the images in the commuting time and the daytime through DVR, which is installed on the cross street. As a result of experiment, it could efficiently detect the stop vehicle within the detection region inside the crossroad. The processing speed is shown in 13~18 frame per second according to the area of the detection region, thereby being judged to likely have no problem about the real-time processing.

Real-Time Landmark Detection using Fast Fourier Transform in Surveillance (서베일런스에서 고속 푸리에 변환을 이용한 실시간 특징점 검출)

  • Kang, Sung-Kwan;Park, Yang-Jae;Chung, Kyung-Yong;Rim, Kee-Wook;Lee, Jung-Hyun
    • Journal of Digital Convergence
    • /
    • v.10 no.7
    • /
    • pp.123-128
    • /
    • 2012
  • In this paper, we propose a landmark-detection system of object for more accurate object recognition. The landmark-detection system of object becomes divided into a learning stage and a detection stage. A learning stage is created an interest-region model to set up a search region of each landmark as pre-information necessary for a detection stage and is created a detector by each landmark to detect a landmark in a search region. A detection stage sets up a search region of each landmark in an input image with an interest-region model created in the learning stage. The proposed system uses Fast Fourier Transform to detect landmark, because the landmark-detection is fast. In addition, the system fails to track objects less likely. After we developed the proposed method was applied to environment video. As a result, the system that you want to track objects moving at an irregular rate, even if it was found that stable tracking. The experimental results show that the proposed approach can achieve superior performance using various data sets to previously methods.

Real-Time Container Shape and Range Recognition for Implementation of Container Auto-Landing System

  • Wei, Li;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.6
    • /
    • pp.794-803
    • /
    • 2009
  • In this paper, we will present a container auto-landing system, the system use the stereo camera to measure the container depth information. And the container region can be detected by using its hough line feature. In the line feature detection algorithm, we will detect the parallel lines and perpendicular lines which compose the rectangle region. Among all the candidate regions, we can select the region with the same aspect-ratio to the container. The region will be the detected container region. After having the object on both left and right images, we can estimate the distance from camera to object and container dimension. Then all the detect dimension information and depth inform will be applied to reconstruct the virtual environment of crane which will be introduce in this paper. Through the simulation result, we can know that, the container detection rate achieve to 97% with simple background. And the estimation algorithm can get a more accuracy result with a far distance than the near distance.

  • PDF

Real-Time Moving Object Detection and Shadow Removal in Video Surveillance System (비디오 감시 시스템에서 실시간 움직이는 물체 검출 및 그림자 제거)

  • Lee, Young-Sook;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.574-578
    • /
    • 2009
  • Real-time object detection for distinguishing a moving object of interests from the background image in still image or video image sequence is an essential step to a correct object tracking and recognition. Moving cast shadow can be misclassified as part of objects or moving objects because the shadow region is included in the moving object region after object segmentation. For this reason, an algorithm for shadow removal plays an important role in the results of accurate moving object detection and tracking systems. To handle with the problems, an accurate algorithm based on the features of moving object and shadow in color space is presented in this paper. Experimental results show that the proposed algorithm is effective to detect a moving object and to remove shadow in test video sequences.

  • PDF

DRF-based Object Detection Using the Object Adaptive Patch in the Satellite Imagery

  • Choi, Hyoung-Min;Lee, Kyoung-Mu;Lee, Sang-Uk
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.85-88
    • /
    • 2009
  • In this paper, we propose a DRF-based object detection method using the object adaptive patch in the satellite imagery. It is a Discriminative Random Fields (DRF) based work, so the detection is done by labeling to the possible patches in the image. For the feature information of each patch, we use the multi-scale and object adaptive patch and its texton histogram, instead of using the single scale and fixed grid patch. So, we can include contextual layout of texture information around the object. To make object adaptive patch, we use "superpixel lattice" scheme. As a result, each group of labeled patches represents the object or object's presence region. In the experiment, we compare the detection result with a fixed grid scheme and shows our result is more close to the object shape.

  • PDF

USER BASED IMAGE SEGMENTATION FOR APPLICATION TO SATELLITE IMAGE

  • Im, Hyuk-Soon;Park, Sang-Sung;Shin, Young-Geun;Jang, Dong-Sik
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.126-129
    • /
    • 2008
  • In this paper, we proposed a method extracting an object from background of the satellite image. The image segmentation techniques have been widely studied for the technology to segment image and to synthesis segment object with other images. Proposed algorithm is to perform the edge detection of a selected object using genetic algorithm. We segment region of object based on detection edge using watershed algorithm. We separated background and object in indefinite region using gradual region merge from segment object. And, we make GUI for the application of the proposed algorithm to various tests. To demonstrate the effectiveness of the proposed method, several analysis on the satellite images are performed.

  • PDF