• Title/Summary/Keyword: Ocean Environmental Loads

Search Result 133, Processing Time 0.035 seconds

Lifting off simulation of an offshore supply vessel considering ocean environmental loads and lifting off velocity

  • Jeong, Dong-Hoon;Roh, Myung-Il;Ham, Seung-Ho
    • Ocean Systems Engineering
    • /
    • v.5 no.3
    • /
    • pp.181-198
    • /
    • 2015
  • An OSV (Offshore Support Vessel) is being used to install a structure which is laid on its deck or an adjacent transport barge by lifting off the structure with its own crane, lifting in the air, crossing splash zone, deeply submerging, and lastly landing it. There are some major considerations during these operations. Especially, when lifting off the structure, if operating conditions such as ocean environmental loads and lifting off velocity are not suitable, the collision can be occurred due to the relative motion between the structure and the OSV or the transport barge. To solve this problem, this study performs the physics-based simulation of the lifting off step while the OSV installs the structure. The simulation includes the calculation of dynamic responses of the OSV and the structure, including the collision detection between the transport barge and the structure. To check the applicability of the physics-based simulation, it is applied to a problem of the lifting off step by varying the ocean environmental loads and the lifting off velocity. As a result, it is confirmed that the operability of the lifting off step are affected by the conditions.

Motion predictive control for DPS using predicted drifted ship position based on deep learning and replay buffer

  • Lee, Daesoo;Lee, Seung Jae
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.768-783
    • /
    • 2020
  • Typically, a Dynamic Positioning System (DPS) uses a PID feed-back system, and it often adopts a wind feed-forward system because of its easier implementation than a feed-forward system based on current or wave. But, because a ship's drifting motion is caused by wind, current, and wave drift loads, all three environmental loads should be considered. In this study, a motion predictive control for the PID feedback system of the DPS is proposed, which considers the three environmental loads by utilizing predicted drifted ship positions in the future since it contains information about the three environmental loads from the moment to the future. The prediction accuracy for the future drifted ship position is ensured by adopting deep learning algorithms and a replay buffer. Finally, it is shown that the proposed motion predictive system results in better station-keeping performance than the wind feed-forward system.

Expected Life Evaluation of Offshore Wind Turbine Support Structure under Variable Ocean Environment (해양환경의 변동성을 고려한 해상풍력터빈 지지구조물의 기대수명 평가)

  • Lee, Gee-Nam;Kim, Dong-Hyawn;Kim, Young-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.435-446
    • /
    • 2019
  • Because offshore structures are affected by various environmental loads, the risk of damage is high. As a result of ever-changing ocean environmental loads, damage to offshore structures is expected to differ from year to year. However, in previous studies, it was assumed that a relatively short period of load acts repeatedly during the design life of a structure. In this study, the residual life of an offshore wind turbine support structure was evaluated in consideration of the timing uncertainty of the ocean environmental load. Sampling points for the wind velocity, wave height, and wave period were generated using a central composites design, and a transfer function was constructed from the numerical analysis results. A simulation was performed using the joint probability model of ocean environmental loads. The stress time history was calculated by entering the load samples generated by the simulation into the transfer function. The damage to the structure was calculated using the rain-flow counting method, Goodman equation, Miner's rule, and S-N curve. The results confirmed that the wind speed generated at a specific time could not represent the wind speed that could occur during the design life of the structure.

Reliability Analysis of Gravity-based Offshore Wind Turbine Foundation Considering Ocean Environmental Loads and Soil Uncertainty (해양환경하중 및 지반의 불확실성을 고려한 중력식 해상풍력 기초의 신뢰성 해석)

  • Lee, Sang Geun;Kim, Dong Hyawn
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.359-365
    • /
    • 2015
  • A reliability analysis of the gravity-based foundation of anoffshore wind turbine was performed by considering the uncertainties of the design variables, including environmental loads. The limit state functions of the gravity-based foundation were defined using the response limits of the support structures suggested in the DNV standard. The wind load couldbe obtained using the GH_bladed software, and the wave load was calculated using the Morison equation. Then, the extreme distributions of the wind and wave loads were estimated by applying the peak over threshold (POT) method to the wind and wave load data. The probability distribution characteristics of the soil properties were defined with reference to a southwest coast geotechnical survey report. The reliability index was evaluated for each failure mode using a first-order reliability method.

Dynamic Stability during Transportation of Bridge Caisson (교량 케이슨 운송의 동적 안정성 고찰)

  • Jo, Chul-Hee;Kim, Sung-Jun;Cheong, Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.104-108
    • /
    • 2009
  • As the demands of ocean resource development increase, many offshore structures are required. To cope with the active ocean developments, many types of construction methods have been applied for offshore facilities, including oil, gas and harbors. One of the challenges is to transport and install the heave bridge caisson. Several construction methods are well understood. However, for the sake of safety and reliability, the F/D installation method can be utilized. While the caisson is carried by an F/D, the mooring force of the tug boat and the structure stability from exiting motions in the dock should be checked against external loadings and sea conditions. The external loads can be classified with wind force, current force, and wave force. In the stability analysis, transportation velocity and draft of F/D are important factors. The dynamic stability and hook load for crane barge installation for the same caisson are also studied. Considering external loads and dominant factors, the stability of caisson during transportation has been investigated.

Numerical Study on Characteristics and Control of Heading Angle of Floating LNG Bunkering Terminal for Improvement of Loading and Off-loading Performance

  • Oh, Seunghoon;Jung, Dong-Woo;Kim, Yun-Ho;Kwak, Hyun-Uk;Jung, Jae-Hwan;Jung, Sung-Jun;Park, Byeongwon;Cho, Seok-Kyu;Jung, Dongho;Sung, Hong Gun
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.77-88
    • /
    • 2020
  • In this study, heading characteristics and heading control performances were evaluated to achieve the wave shield effect. The wave shield effect originating from heading control reduces the relative motions of moored vessels in a floating liquefied natural gas bunkering terminal (FLBT). Therefore, loading and off-loading performances are improved through reduced relative motion. For the objective of this study and efficiency of the analysis, a simplified model was used that assuming no relative motion of the moored vessels in the FLBT. The simplified model involved modeling the environmental loads and inertia of several floating bodies, including FLBT, into the environmental loads and inertia of a single vessel. The simplified model was validated through comparisons with model tests. With the simplified model, heading characteristics and heading control simulations were performed using low-frequency planar motion equations. The heading characteristics and heading control performances of FLBT were analyzed through the results of simulations under the expected environmental conditions. The capacity of the tunnel thrust for the heading control performance was confirmed to be adequate for improvement of the loading and off-loading performances using the wave shielding effects under the operation conditions.

Environmental Impact Analysis on Fish Stocks caused by Environmental Change in the Coastal Fishing Ground (연안어장의 환경변화가 수산자원량에 미치는 영향평가)

  • ;MASAHIKO SEKINE
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.36-44
    • /
    • 2001
  • To predict the influence on fish stocks which were caused by environmental change in the fishing ground of shallow sea areas, we have developed the Shallow-Sea Ecological Model(SSEM) which that focuses on living organisms, especially fish and benthos. By applying the SSEM in the Seto-Inland Sea of Japan, we have simulated another aspect of influence on fish stocks that was caused by oxygen deficient water mass and nutrient loads. From the simulated result of the fish stocks, it was indicated that the stock of fish and benthos has shown a relative difference between the western sea and the eastern sea in the Seto-Inland Sea. According the to prediction, results of fish stocks that were caused by oxygen deficient water mass, it was estimated that the pelagicfish stock increases about 6 %, whereas the stocks of demersalfish and benthos decreases about 30% and 70%, respectively. On the other hand, it seemed that there was an increased in the fish stocks of demersalfish and benthos in the eastern sea of Seto-Inland Sea by nutrient loads reduction.

  • PDF

An Experimental Study on IMO 2nd Generation Stability Assessment in Dead Ship Condition of 13K Chemical Tanker (13K Chemical Tanker의 기관 제어 불능상태 IMO 2세대 안정성 평가에 관한 실험적 연구)

  • Lee, Sang-Beom;Moon, Byung-Young
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.2
    • /
    • pp.89-95
    • /
    • 2022
  • The stability of the existing ships has been evaluated through numerical calculations in the steady-state, but recently the IMO proposed a new stability assessment criteria that the stability is evaluated in the state in which environmental loads from such as waves and wind act like the loads under actual ship operating conditions. In this study, IMO 2nd generation stability assessment method and procedure were summarized for the dead ship condition, and Direct Stability Assessment (DSA) was performed on 13K chemical tanker through basin model test. The model test is performed in the ocean engineering basin to implement wave and wind loads, and environmental conditions for waves were set height and period of the incident wave, considering the regular wave and wind generation range reproducible in the ocean engineering basin. In addition, to consider the effect of wind speed, the Beaufort Scale for wind speed was applied in the model test.

Comparison of stress analysis tools for ocean vertical pile under environmental loads (해양 수직 파일(Vertical Pile)에 작용하는 환경 하중하의 응력 해석 기법 비교)

  • 조철희;김병환;김두홍
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.121-127
    • /
    • 2001
  • To investigate the stability and integrity of offshore structures, it is necessary to estimates the significant ocean environmental loadings. They include hydrostatic pressure, wind, wave, current, tide, ice, earthquake, temperature, marine growth and scouring. Waves are of major importance among them because of the large forces acting on submerged parts of the structure caused by accompanying water motions. For the comparison of stress and deflection analysis tools, a vertical pile is applied under environmental loads. The analysis is concerned with SACS(Structural Analysis Computer System), ANSYS and C program. SACS and C program have nearly the same results but not ANSYS. This study shows the comparison of results obtained from 3 different approaches.

  • PDF

Prescreening of Environmental Conditions for Prediction of Severe Operation Condition of Offshore Structures

  • Lim, Dong-Hyun;Kim, Yonghwan;Kim, Taeyoung
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.4
    • /
    • pp.252-267
    • /
    • 2015
  • Offshore structures might encounter several environmental and operating conditions during their lifetime of several decades. In order to predict the dynamic behavior of offshore structures, several simulation cases should be considered to deal with all the combinations of ocean environments and operating conditions. Because a sophisticated time-domain coupled dynamic analysis requires an extremely large amount of computational time to handle all the possible cases, an efficient preliminary process to prescreen the probability of severe environmental conditions can be helpful in downsizing the number of simulation cases and computational effort. In this study, a prescreening procedure to reduce the number of environmental conditions for dynamic analyses of offshore structures is proposed. For the efficiency of the procedure, frequency-domain theories were adopted to estimate the platform offset, using quasi-static analyses in line tension prediction. The results were validated by comparing with those of dynamic analysis coupled between platform and mooring lines, and reasonable agreement was observed. In addition, the characteristics of environmental conditions classified to be severe to the system were investigated through the application of the developed prescreening scheme to several actual environmental conditions.