• Title/Summary/Keyword: Ochnaflavone

Search Result 10, Processing Time 0.023 seconds

Ochnaflavone, a Natural Biflavonoid, Induces Cell Cycle Arrest and Apoptosis in HCT-15 Human Colon Cancer Cells

  • Kang, You-Jin;Min, Hye-Young;Hong, Ji-Young;Kim, Yeong-Shik;Kang, Sam-Sik;Lee, Sang-Kook
    • Biomolecules & Therapeutics
    • /
    • v.17 no.3
    • /
    • pp.282-287
    • /
    • 2009
  • Ochnaflavone is a natural biflavonoid and mainly found in the caulis of Lonicera japonica (Caprifoliaceae). Biological activities such as anti-inflammatory and anti-atherogenic effects have been previously reported. The anticancer activity of ochnaflavone, however, has been poorly elucidated yet. In the present study, we investigated the effect of ochnaflavone on the growth inhibitory activity in cultured human colon cancer cell line HCT-15. Ochnaflavone inhibited the proliferation of the cancer cells with an $IC_{50}$ value of $4.1{\mu}M$. Flow cytometric analysis showed that ochnaflavone arrested cell cycle progression in the G2/M phase, and induced the increase of sub-G1 peak in a concentration-dependent manner. Induction of cell cycle arrest was correlated with the modulation of the expression of cell cycle regulating proteins including cdc2 (Tyr15), cyclin A, cyclin B1 and cyclin E. The increase of sub-G1 peak by the higher concentrations of ochnaflavone (over $20{\mu}M$) was closely related to the induction of apoptosis, which was evidenced by the induction of DNA fragmentation, activation of caspase-3, -8 and -9, and cleavage of poly-(ADP-ribose) polymerase. These findings suggest that the cell cycle arrest and induction of apoptosis might be one possible mechanism of actions for the anti-proliferative activity of ochnaflavone in human colon cancer cells.

Synthesis of Ochnaflavone and Its Inhibitory Activity on PGE2 Production

  • Kim, Sung Soo;Vo, Van Anh;Park, Haeil
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3219-3223
    • /
    • 2014
  • Ochnaflavone, a naturally occurring biflavonoid composed of two units of apigenin (5,7,4'-trihydroxyflavone) joined via a C-O-C linkage, was first synthesized and evaluated its inhibitory activity on $PGE_2$ production. Total synthesis was accomplished through modified Ullmann diaryl ether formation as a key step. Coupling reactions of 4'-halogenoflavones and 3'-hydroxy-5,7,4'-trimethoxyflavone were explored in diverse reaction conditions. The reaction of 4'-fluoro-5,7-dimethoxyflavone (2c) and 3'-hydroxy-5,7,4'-trimethoxyflavone (2d) in N,N-dimethylacetamide gave the coupled compound 3 in 58% yield. Synthetic ochnaflavone strongly inhibited PGE2 production ($IC_{50}=1.08{\mu}M$) from LPS-activated RAW 264.7 cells, which was due to reduced expression of COX-2. On the contrary, the inhibition mechanism of wogonin was somewhat different from that of ochnaflavone although wogonin, a natural occurring anti-inflammatory flavonoid, showed strong inhibitory activity of $PGE_2$ production ($IC_{50}=0.52{\mu}M$), and seems to be COX-2 enzyme inhibition. Our concise total synthesis of ochnaflavone enable us to provide sufficient quantities of material for advanced biological studies as well as to efficiently prepare derivatives for structure-activity relationship study.

Effect of Ochnaflavone as An Immunoadjuvant (Ochnaflavone의 면역보조제 효과)

  • Park, Minjoo;Rhew, Ki Yon;Han, Yongmoon
    • YAKHAK HOEJI
    • /
    • v.56 no.6
    • /
    • pp.366-371
    • /
    • 2012
  • In this present study, we determined whether or not there is an immunoadjuvant effect of ochnaflavone, a biflavone isolated from Lonicera japonica. As an antigenic source, the cell wall (CACW) of Candida albicans, a fungal pathogen, was used. CACW consists of 95% carbohydrate (mannan). In the experiments, BALB/c mice were immunized with emersion forms of CACW combined with or without ochnaflavone (Och) in the presence of IFA containing mineral oil or CACW alone. Then, the amounts of antisera collected from these mice groups were measured by the ELISA method. Data from these experiments showed that CACW combined with Och (CACW/Och/IFA) provoked the production of antisera app. 2.2 or 5 times more than the corresponding CACW/IFA or CACW alone (CACW/DPBS), respectively, in mice (P<0.05). We further examined the immune response type induced by Och. Analysis of the values of the IgG1/IgG2a ratios obtained from IgG isotyping revealed that Och induced Th2-immunity more dominantly than Th1. This finding was confirmed by cytokine profile. CACW/Och/IFA formulation induced IL-4 (Th2-type cytokine) more than IFN${\gamma}$ (Th1-type cytokine) as compared with CACW/IFA and CACW/DPBS formulations (P<0.05). All data combined, Och appears to have an immunoadjuvant activity that may convert Th1 immunity into Th2 immunity.

Flavonoids from the Aerial Parts of Lonicera japonica

  • Son, Kun-Ho;Park, Jung-Ok;Chung, Kyu-Charn;Chang, Hyeun-Wook;Kim, Hyun-Pyo;Kim, Ju-Sun;Kang, Sam-Sik
    • Archives of Pharmacal Research
    • /
    • v.15 no.4
    • /
    • pp.365-370
    • /
    • 1992
  • Seven flavonoids were isolated from the aerial parts of Lonicera japonica. Their structures were characterized as hydnocarpin 1, quercetin 2, ochnaflavone 3, ochnaflavone 4'-O-methylether 4, astragalin 5, isoquercitrin 6, and rhoifolin 7 by chemical and spectroscopic evidences.

  • PDF

Naturally Occurring Biflavonoid, Ochanflavone, Inhibits Cyclooxygenases-2 and 5-Lipoxygenase in Mouse Bone Marrow-derived Mast Cells

  • Son Min-Jung;Moon Tae-Chul;Lee Eun-Kyung;Son Kun-Ho;Kim Hyun-Pyo;Kang Sam-Sik;Son Jong-Keun;Lee Seung-Ho;Chang Hyeun-Wook
    • Archives of Pharmacal Research
    • /
    • v.29 no.4
    • /
    • pp.282-286
    • /
    • 2006
  • Ochnaflavone is a medicinal herbal product isolated from Lonicera japonica that inhibits cyclooxygenase-2 (COX-2) dependent phases of prostaglandin $D_2(PGD_2)$ generation in bone marrow-derived mast cells (BMMC) in a concentration-dependent manner with $IC_{50}$ values of $0.6{\mu}M$. Western blotting probed with specific anti-COX-2 antibodies showed that the decrease in quantity of the $PGD_2$ product was accompanied by a decrease in the COX-2 protein level. In addition, this compound consistently inhibited the production of leukotriene $C_4 (LTC_4)$ in a dose dependent manner, with an $IC_{50}$ value of $6.56 {\mu}M$. These results demonstrate that ochnaflavone has a dual cyclooxygenase-2/5-lipoxygenase inhibitory activity. Furthermore, this compound strongly inhibited degranulation reaction in a dose dependent manner, with an $IC_{50}$ value of $3.01{\mu}M$. Therefore, this compound might provide a basis for novel anti-inflammatory drugs.

Induction of Growth Hormone Release by the Extracts of Lonicera japonica $T_{HUNB.}$ (인동 추출물의 성장호르몬 유발 효과)

  • Jung, Dae-Young;Lee, Ho-Young;Ha, Hye-Kyung;Jung, Da-Young;Kang, Sam-Sik;Kim, Chung-Sook
    • Korean Journal of Pharmacognosy
    • /
    • v.34 no.3 s.134
    • /
    • pp.256-262
    • /
    • 2003
  • Lonicerae Flos (LF) has been used as an anticancer, anti-viral, and anti-inflammatory agent in traditional herbal medicine. In this study, induction of rat growth hormone (rGH) by addition of methanol (MeOH) extract of LF of Lonicerae (L.) Folium or several constituents of L. Folium were carried out in the pituitary cell culture system. Induced rGH level by addition of 70% MeOH extract of LF was increased to $732.65{\pm}105.64%$ of control (n=18, p<0.01), however, the other sequential fractions were not significantly different from the control. Ochnaflavone, a constituent of L. Folium, induced rGH level in the cell culture to $329.73{\pm}160.00%$ of control (n=6, p<0.01). An I..v. injection of the MeOH extract of LF did not increase plasma rGH level in anesthetized rats. Unfortunately, the MeOH extract of LF induced prolactin and LH release about 7 and 5 fold of the control, respectively (p<0.05, each). In conclusions, 70% MeOH extract of LF exerted induction of rGH release in rat pituitary cell culture. Further studies to investigate mechanisms of the inducded rGH by LF are in progress.

Inhibition of Arachidonate Release From Rat Peritoneal Macrophage by Biflavonoids

  • Lee, Song-Jin;Son, Kun-Ho;Chang, Hyeun-Wook;Kang, Sam-Sik;Kim, Hyun-Pyo
    • Archives of Pharmacal Research
    • /
    • v.20 no.6
    • /
    • pp.533-538
    • /
    • 1997
  • Biflavonoid is one of unique classes of naturally-occurring bioflavonoid. Previously, certain biflavonoids were found to possess the inhibitory effects on phospholipase $A_2$ activity and lymphocytes $ proliferation^1$ suggesting their anti-inflammatory/immunoregulatory potential. In this study, effects of several biflavonoids on arachidonic acid release from rat peritoneal macrophages were investigated, because arachidonic acid released from the activated macrophages is one of the indices of inflammatory conditions. When resident peritoneal macrophages labeled with $[^{3}H]$arachidonic acid were activated by phorbol 12-myristate 13-acetate(PMA) or calcium ionophore, A23187, radioactivity released in the medium was increased approximately 4.1-7.3 fold after 120 min incubation compared to the spontaneous release in the control incubation. In this condition, biflavonoids (10 uM) such as ochnaflavone, ginkgetin and isoginkgetin, showed inhibition of arachidonate release from macrophages activated by PMA (32.5-40.0% inhibition) or A23187 (21.7-41.7% inhibition). Amentoflavone showed protection only against PMA-induced arachidonate release, while apigenin, a monomer of these biflavonoids, did not show the significant inhibition up to 10 uM. Staurosporin (1 uM), a protein kinase C inhibitor, showed an inhibitory effect only against PMA-induced arachidonate release (96.8% inhibition). Inhibition of arachidonate release from the activated macrophages may contribute to an anti-inflammatory potential of biflavonoids in vivo.

  • PDF

In vitro Anti-Cancer Effect of Wellness-Compound (Ochnaflavone) (In vitro 웰니스 화합물 (Ochnaflavone)에 의한 암세포 성장 저해)

  • Lee, Jae-Sook;Choi, Hwa-Jung;Kim, Myung-Ju;Park, Jang-Soon
    • Journal of Digital Convergence
    • /
    • v.13 no.5
    • /
    • pp.337-344
    • /
    • 2015
  • Medicinal plants containing wellness-fusion-complex compound are increasingly being pursued as suitable alternative sources of various biological properties. In this study, inhibitory effect of Quintinia acutifolia, which is a New Zealand plant, on P388 murine lymphocytic leukemia cells using MTT [3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyl-tetrazolium bromide] assay. Based on $^1H-NMR$, $^{13}C-NMR$ spectral data and other spectral analysis, 2,3,2'',3''-tetrahydroochanaflavone (1) and 2'',3''-dihydroochana-flavone (3) inhibited the leukemia cells were purified from the plants. 2,3,2'',3''-tetrahydroochanaflavone (1) and 2'',3''-dihydroochana-flavone (3) are biflavonoids possessing two basic flavonoids and actively inhibited growth of P388 murine lymphocytic leukemia cells with a 50% inhibitory concentration ($IC_{50}$) of $8.2{\mu}g/mL$ and $3.1{\mu}g/mL$, respectively. Specially, 2'',3''-dihydroochana-flavone (3) possessed unconjugated flavonone system, which isn't consist of a pair with B ring of 2,3,2'',3''-tetrahydroochanaflavone (1). Therefore, the two compounds could be considered as a candidate for development of anticancer drugs and need to much studies in the future.

Effects of Naturally Occurring Flavonoids on Inflammatory Responses and Their Action Mechanisms

  • Kim, Hyun-Pyo;Son, Kun-Ho;Chang, Hyeun-Wook;Kang, Sam-Sik
    • Natural Product Sciences
    • /
    • v.6 no.4
    • /
    • pp.170-178
    • /
    • 2000
  • Flavonoids are natural polyphenolic compounds widely distributed in plant kingdom. Although many flavonoids were found to show anti-inflammatory activity in vitro and in vivo, the potency of anti-inflammatory activity was not enough for a clinical trial. Thus, a search for finding potential flavonoid molecules is continuing. In this review, in vivo anti-inflammatory activity of various flavonoid derivatives is summarized mainly based on the results obtained in authors' laboratories. Among them, several biflavonoids such as amentoflavone and ginkgetin were found to possess anti-inflammatory activity on animal models of acute/chronic inflammation comparable to nonsteroidal and steroidal anti-inflammatory drugs currently used. In respect of their action mechanisms, the effects on arachidonic acid metabolism and nitric oxide production were described. Some flavonoids directly inhibit cyclooxygenase and/or lipoxygenase. Biflavones such as ochnaflavone and ginkgetin are inhibitors of phospholipase $A_2$. In recent studies, certain flavonoids were also found to suppress cyclooxygenase-2 and inducible nitric oxide synthase expression induced by inflammatory stimuli. Therefore, it is suggested that anti-inflammatory activity of the certain flavonoids (mainly flavones, flavonols and biflavonoids) may be mediated by direct inhibition of arachidonic acid metabolizing enzymes as well as suppression of the enzyme expression involved in inflammatory responses.

  • PDF

Flavonoids: Potential Antiinflammatory Agents

  • Kim, Hyun-Pyo;Son, Kun-Ho;Chang, Hyun-Wook;Kang, Sam-Sik
    • Natural Product Sciences
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 1996
  • Flavonoids are widely distributed polyphenol compounds in plant kingdom and known to possess varieties of biological/pharmacological activities in vitro and in vivo. A search for antiinflammatory/immunoregulatory flavonoids as potential therapeutic agents has been continued, since serious side effects of currently used nonsteroidal and steroidal antiinflammatory drugs limit their long term uses for the inflammatory disorders. In this reserch, various flavonids were isolated and tested for their in vivo antiinflammatory activity and in vitro inhibitory activity of lymphocyte proliferation. Using a mouse ear edema assay, it was found that certain flavones/flavonols possess mild antiinflammatory activity and a C-2,3-double bond might be essential. Isoflavones were less active. These flavonoids inhibited in vitro lymphocyte proliferation, relatively specific for T-cell proliferation $(IC_{50}=1-10\;{\mu}M)$ and the inhibition was reversible. We have also tested several biflavonoid derivatives, since we recently found that biflavones were phospholipase $A_2$ inhibitors. It was demonstrated that biflavones such as ochnaflavone and ginkgetin inhibited lymphocyte proliferation induced by both concanavaline A and lipopolysaccharide. The inhibition was irreversible in contrast to that of flavones/flavonols. And antiinflammatory activity of biflavonoids are discussed.

  • PDF