• Title/Summary/Keyword: Olfacotry Neuron

Search Result 1, Processing Time 0.015 seconds

The Differentiation of the Olfactory Placode in Xenopus (Xenopus 후각원판의 분화)

  • 구혜영
    • The Korean Journal of Zoology
    • /
    • v.39 no.1
    • /
    • pp.54-64
    • /
    • 1996
  • Normal development of the olfactory placode was studied to describe the sequence of events involved in the development of the olfactory placode. It has been primarily concerned with the morphological differentiation of the sensory neurons, their initial growth, maturation patterns and the contacts of their axons with the primitive prosencephalic vesicle. The olfactory organ first appears at stage 23 as a paired thickening of the two ectodermal layers: the superficial non-nervous layer (NNL) and the inner nervous layer (NL). Receptor cells differentiate from the NL and the supporting cells develop from the NNL. After stage 26 the placodal cells begin to migrate toward the epithelial surface between the NNL cells and their apical processes reach the surface at stage 28. As the apical process reaches the epithelial surface, basal processes (presumptive axons) sprout from the base of the NL cells at stage 29/30. They penetrate the underlying telencephalon by stage 32. Sensory synaptic contacts first appear at stage 37/38. Some placodal cells remain at the olfactory epithelium as basal cells while other placodal cells differentiate into olfactory neurons. The results confirmed that neurons originate exclusively from the nervous layer of the ectoderm while supporting cells originate from the NNL layer. The results also indicate that the development of olfactory neuron is independent of information from the target ftssue.

  • PDF