• Title/Summary/Keyword: Operational maintenance

Search Result 398, Processing Time 0.028 seconds

Impact of Maintenance Time of Anti-Ship Missile Harpoon on Operational Availability with Field Data (야전데이터 기반 하푼 유도탄 정비 소요시간이 가동률에 미치는 영향 연구)

  • Choi, Youngjae;Ma, Jungmok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.426-434
    • /
    • 2020
  • This paper studies the impact of the maintenance time of anti-ship missile Harpoon on operational availability with real field data. The Harpoon maintenance simulation model is developed as a testbed for identifying the optimal inventory levels on operational availability. Using multiple linear regression analysis and integer programming, the optimal inventory levels of essential assemblies are suggested. Finally, the result of sensitivity analysis shows the quantitative impact of maintenance time on operational availability and inventory costs. The authors believe that this quantitative analysis can support policy decisions to decrease maintenance time of missiles.

The Optimal Inventory Level of the Maintenance Float to Achieve a Target Operational Availability of Korean-Made Helicopter (한국형 헬기의 목표 운용가용도 달성을 위한 정비대충장비 최적 재고수준 결정)

  • Lee, Sang-Jin;Kim, Seong-Won
    • Korean Management Science Review
    • /
    • v.24 no.2
    • /
    • pp.81-93
    • /
    • 2007
  • Achieving a target operational availability is more economical and efficient than having many quantities of the weapon system, since the cost of weapon system becomes expensive. The intent of this study is twofold; first, we develop the simulation model to determine the optimal inventory level of the maintenance float while achieving a target operational availability of the Korean-made helicopter. The quantity decision model considers following factors such as a reliability. a turn around time(TAT). a protection level for inventory, and so on. Second, we analyze whether the existence of a lateral transshipment among bases and the reduction of TAT relate to an inventory level and the operational availability. The research result shows that both TAT and lateral transshipment have an effect on reducing the inventory level of the maintenance float and improving an operational availability.

The design of a Portable Automatic Test Equipment for Operational Availability of Combat System (전투체계 운용 가용도 향상을 위한 이동형 자동화시험장비 설계)

  • Lee, Rim-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.453-459
    • /
    • 2020
  • It is important to increase the probability that all developed weapon systems can be operated in a steady state at any time. In the case of Integrated Logistics Support, this probability is referred to as operational availability, and the numerical value is quantified during the development process. There are several ways to improve operational availability for successful development of weapon systems. One of the methods is to reduce total corrective maintenance time through Automatic Test Equipment(ATE). Recently, customers in the defense market have become aware of this and demand ways to improve operational availability of weapon systems. Therefore, this paper proposes ways to improve operational availability of weapon systems by changing the method of operating the ATE. The detailed method is to allow field maintenance personnel to carry out field maintenance support onsite. This is an effective way to reduce the total corrective maintenance time of weapon systems by reducing the travel time of field maintenance personnel. The proposed ATE is proved to be able to achieve superior maintenance and operational availability.

On determining a non-periodic preventive maintenance schedule using the failure rate threshold for a repairable system

  • Lee, Juhyun;Park, Jihyun;Ahn, Suneung
    • Smart Structures and Systems
    • /
    • v.22 no.2
    • /
    • pp.151-159
    • /
    • 2018
  • Maintenance activities are regarded as a key part of the repairable deteriorating system because they maintain the equipment in good condition. In practice, many maintenance policies are used in engineering fields to reduce unexpected failures and slow down the deterioration of the system. However, in traditional maintenance policies, maintenance activities have often been assumed to be performed at the same time interval, which may result in higher operational costs and more system failures. Thus, this study presents two non-periodic preventive maintenance (PM) policies for repairable deteriorating systems, employing the failure rate of the system as a conditional variable. In the proposed PM models, the failure rate of the system was restored via the failure rate reduction factors after imperfect PM activities. Operational costs were also considered, which increased along with the operating time of the system and the frequency of PM activities to reflect the deterioration process of the system. A numerical example was provided to illustrate the proposed PM policy. The results showed that PM activities performed at a low failure rate threshold slowed down the degradation of the system and thus extended the system lifetime. Moreover, when the operational cost was considered in the proposed maintenance scheme, the system replacement was more cost-effective than frequent PM activities in the severely degraded system.

A Study on the Efficient Operation of Harpoon Missile Maintenance Personnel Using Simulation Model (시뮬레이션을 활용한 효율적인 하푼 유도탄 정비인력 운영 연구)

  • Choi, Youngjae;Ma, Jungmok
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.1
    • /
    • pp.65-73
    • /
    • 2021
  • The maintenance of the guided missiles typically requires the efficient management of spare parts and maintenance time. This study analyzed the impact of the maintenance time on operational availability. This study classifies the maintenance team with consideration of the skill level of the Harpoon guided missile maintenance and the goal is to analyze the impact on the operational availability with the skill levels quantitatively. Based on the real maintenance data of Harpoon guided missiles, a simulation model is constructed and analyzed. The analysis of the simulation result shows the trade-off between the maintenance time and operational availability. It is expected that the simulation model can help the maintenance policies of guided missiles.

Indicator of Facility Performance Evaluation (FPE) for Educational Facilities of BTL Projects

  • Lee, Kwan-Jong;Lee, Chun-Kyong;Park, Tae-Keun
    • Architectural research
    • /
    • v.14 no.1
    • /
    • pp.35-44
    • /
    • 2012
  • Build-Transfer-Lease (BTL) was introduced to the domestic construction market in 2005. Now, seven years later, the BTL model is most active for educational facilities. In 2011, 93 educational facility projects entered the maintenance stage. Considering the characteristics of today's BTL projects for educational facilities, the main issues are the initial performance and maintenance of educational facilities and the service-providing status for the 20-year operational management period, in relation to providing safety and convenience to students, the facility users. Seeking a solution, local education offices and departments in charge of BTL under the Ministry of Education, Science, and Technology have been exploring various methods of evaluating operational maintenance performance from various perspectives. For educational facility BTL projects, however, the appropriateness of initial operation performance evaluation, rather than considering the 20-year operational management period, is controversial in regards to sustainability. On this account, performance evaluation items in four areas-operational maintenance evaluation, facility performance status evaluation, maintenance subject evaluation, and sustainable change response evaluation-should be extracted. An indicator of facility performance evaluation is presented in this study through an AHP survey targeting experts, as part of establishing an operation performance evaluation system for educational facility BTL projects.

A Process Improvement of Reverse Engineering and Delivery Steps for Service based Software Maintenance (서비스 기반 소프트웨어 유지보수를 위한 역공학과 인도 (Delivery)단계의 프로세스 개선)

  • Park, Jin-Ho;Rhew, Sung-Yul;Kim, Jong-Bae;Chung, Suk-Kyun
    • Journal of Information Technology Services
    • /
    • v.9 no.4
    • /
    • pp.169-185
    • /
    • 2010
  • According to software growth, also software maintenance has been continuously improving. In addition, the existing concept of software maintenance process demands operational management and improvement of service task. However, when we perform maintenance task, we have several constraints about applying service based requirement to system. Therefore, in order to solve these problems, we need a study of task of process for service based maintenance. In this paper, we propose a Service based Software Maintenance Process. Proposed process based on MaRMI-RE standard for software development and maintenance and compares it with the service based representative standards. In a related works, we study activity of ITIL and identify activities and tasks for maintenance. After this, identified activities and tasks compare with activities of MaRMI-RE. And then, we derive activities and tasks of a Service based Software Maintenance Process. Finally, we validate a result by comparing the proposed process with a general service operational process.

An Operational Availability Analysis in Supply Chain Using Simulation (다단계 공급체인에서의 장비운용가용도 시뮬레이션 분석)

  • Park, Se-Hoon;Moon, Seong-Am
    • Korean System Dynamics Review
    • /
    • v.12 no.1
    • /
    • pp.115-130
    • /
    • 2011
  • This study shows the operational availability(Ao) analysis of the supply chain with maintenance functions using the system dynamics simulation. The simulation uses 60 equipments which are serial systems composed by 4 major components. And every entities are connected each other by causal loops. So whole simulation executed like one organic system. Specially we consider 2 constraints, one is the number of spare parts and the other is maintenance capacity level. 2 constraints have 11 levels each so the simulation has 121(11*11) scenarios which scenario has 30 different random number seed. The simulation executed total 3,630(11*11*30) times. We analysis average Ao of total equipments by 121 scenarios and additionally the regression of the average Ao and 2 constraints. As the result, we can get the more accurate values by the system dynamics simulation than the regression to analysis complex system like the supply chain with maintenance functions.

  • PDF

A Study on an Operational Availability Computation Model for Weapon Systems (무기체계 운용가용도 산정 모델에 관한 연구)

  • Kim, Hye-Lyeong;Baek, Soon-Heum;Choi, Sang-Yeong
    • Journal of the military operations research society of Korea
    • /
    • v.35 no.3
    • /
    • pp.17-30
    • /
    • 2009
  • In this study, we propose the operational availability computation model that can be used on the weapon system's requirement planning phase. The proposed model consists of the time parameters of Ao(Operational Availability) for a system and each time parameter's estimation method. The time parameters for Ao computation are TT(Total Time) and TDT(Total Down Time). The time parameters are defined by considering OMS/MP(Operational Mode Summary/Mission Profile) elements. TT is a calendar time as a specific mission time at wartime or one year at peacetime. TDT consists of TPM(Total Preventive Maintenance time), TCM (Total Corrective maintenance time), TALDT(Total Administrative and Logistics Down Time). Then the estimation method for these time parameters are presented by the weapon systems types.

A Study on Reliability Centered Maintenance (통합신뢰성 경영에서 보전에 중점을 둔 신뢰성에 관한 연구)

  • Kim, Hwan-Joong
    • Journal of Applied Reliability
    • /
    • v.3 no.1
    • /
    • pp.73-82
    • /
    • 2003
  • Reliability Centered Maintenance(RCM) was initially developed for the commercial aviation industry in the late 1960s and now is equally applicable to a variety of equipment other than aircraft. RCM is a method for establishing a preventive maintenance program which will efficiently and effectively allow the achivement of the the required safety and availability levels of equipment and structures. RCM provides for the use of a decision logic tree to identify applicable and effective preventive maintenance requirements for equipment and structures according to the safety, maintenance requirements for equipment and structures according to the safety, operational and economic consequences of identifiable failures, and the degradation mechanism, reponsible for the those failures. The end result of working through the decision logic is a judgement as to the necessity of performing a maintenance task. In this paper, we provide guiding principles based on IEC 60300-3-11 for RCM analysis methods and operational method of structure and equipment.

  • PDF