• Title/Summary/Keyword: Optical Disc Drives

Search Result 27, Processing Time 0.037 seconds

Dynamic Analysis of a 3-Axis Ultra-Slim Actuator for Optical Disc Drives (광디스크 드라이브용 3축 초박형 액추에이터의 동특성 분석)

  • Kim Se-Won;Cho Tae-Min;Lee Ju-Hyung;Jin Kyoung-Bog;Rim Kyung-Hwa
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.4 s.235
    • /
    • pp.624-631
    • /
    • 2005
  • A note-book PC has become thinner in recent years, which requires the optical disc drives with small height and high memory capacity. Therefore the actuator of optical disc drives must be thinner and have disc tilt compensation function for high density memory. In this paper, the actuator with hybrid type is investigated for 3-axis ultra-slim actuator. A 3-axis ultra-slim actuator is designed by using the modal analysis of the actuator and the electromagnetic analysis of magnetic circuit to achieve dynamic characteristics. Also, magnetic force between tilt magnet and tilt yoke is investigated to and the influence on the DC sensitivity in the focus and track directions.

Optical Axis Auto-adjustment of Objective Lens in Optical Disc Drives (광디스크 드라이브에서의 대물렌즈 자동광축보정)

  • Ryoo, Jung-Rae;Moon, Jung-Ho;Cho, Ju-Pil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.6
    • /
    • pp.558-563
    • /
    • 2008
  • Optical axis misalignment, which represents the position deviation of the objective lens from the optical axis, is an inevitable assembly error in an optical pick-up. Since the laser power intensity varies with respect to the distance from the optical axis, the misalignment leads to variation of the laser spot power intensity, which is one of the critical factors increasing data bit-error-rate in optical disc drives. In this paper, an auto-adjustment scheme for optical axis alignment is proposed to eliminate the undesirable variation of the laser spot power intensity in optical disc drives. An envelope of the data RF signal is extracted and utilized to detect the optical axis misalignment. Then an adjustment input is added to the driving input of the tracking actuator to shift the objective lens to the optical axis. Finally, the feasibility is verified by experiments.

Experimental Analysis of Axial Vibration in Slim-type Optical Disc Drive (슬림형 광 디스크 드라이브의 축방향 진동에 대한 실험적 해석)

  • 박대경;전규찬;이성진;장동섭
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.694-699
    • /
    • 2002
  • As the demand for slim laptops requires ion'-height optical disc drives, vibration problems of optical disc drives are of great concern. Additionally, with the decrease of a track width and a depth of focus in high density drives, studies on vibration resonance between mechanical parts become more important. From the vibration point of view, the performance of optical disc drives is closely related with the relative displacement between a disc and an objective lens which is controlled by servo mechanism. In other words, to read and write data properly, the relative displacement between an optical disc and an objective lens should be within a certain limit. The relative displacement is dependent on not only an anti-vibration mechanism design but also servo control capability. Good servo controls can make compensation for poor mechanisms, and vice versa. In a usual development process, robustness of the anti-vibration mechanism is always verified with the servo control of an objective lens. Engineers partially modify servo gain margin in case of a data reading error. This modification cannot correct the data reading error occasionally and the mechanism should be redesigned more robustly. Therefore it is necessary to verify a mechanism with respect to the possible servo gain plot. In this study we propose the experimental verification method far anti-vibration mechanism with respect to the existing servo gain plot. This method verifies axial vibration characteristics of optical disc drives on the basis of transmissibility. Using this method, we verified our mechanism and modified the mechanism for better anti-vibration characteristics.

  • PDF

Experimental Analysis of Axial Vibration in Slim-type Optical Disc Drive (슬림형 광 디스크 드라이브의 축방향 진동에 대한 실험적 해석)

  • 박대경;전규찬;이성진;장동섭
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.11
    • /
    • pp.833-839
    • /
    • 2002
  • As the demand for slim laptops requires low-height optical disc drives, vibration problems of optical disc drives are of great concern. Additionally, with the decrease of a track width and a depth of focus in high density drives, studies on vibration resonance between mechanical parts become more important. From the vibration point of view, the performance of optical disc drives is closely related with the relative displacement between a disc and an objective lens which is controlled by servo mechanism. In other words, to read and write data properly, the relative displacement between an optical disc and an objective lens should be within a certain limit. The relative displacement is dependent on not only an anti-vibration mechanism design but also servo control capability. Good servo controls can make compensation for poor mechanisms, and vice versa. In a usual development process, robustness of the anti-vibration mechanism is always verified with the servo control of an objective lens. Engineers partially modify servo gain margin in case of a data reading error. This modification cannot correct the data reading error occasionally and the mechanism should be redesigned more robustly. Therefore it is necessary to verify a mechanism with respect to the possible servo gain plot. In this study we propose the experimental verification method for anti-vibration mechanism with respect to the existing servo gain plot. Thismethod verifies axial vibration characteristics of optical disc drives on the basis of transmissibility. Using this method, we verified our mechanism and modified the mechanism for better anti-vibration characteristics.

Development of the 3-Axis Ultra-slim Actuator for Optical Disc Drives (광디스크 드라이브용 3축 초박형 액츄에이터 개발)

  • 김세원;조태민;윤영복;신경식;임경화
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.208-213
    • /
    • 2003
  • A note-book PC has become thinner in recent years. And optical disc drives are required to have high memory capacity. Therefore, the actuator of optical disc drives must be thinner and have disc tilt compensation function for high density memory. In this paper, the hybrid type actuator is investigated for 3-axis ultra-slim actuator. A 3-axis ultra-slim actuator is designed by using the modal analysis of the actuator and the electromagnetic analysis of magnetic circuit to achieve dynamic characteristics and magnetic flux density for high sensitivity, respectively. Also, magnetic force between tilt magnet and tilt yoke is investigated to find the influence on the DC sensitivity in the focus and track directions.

  • PDF

Analysis of Package Drop and its Application for Optical Disc Drives (광 디스크 드라이브용 완충포장재의 낙하충격 해석 및 활용)

  • 석기영;윤기원;나정민;박창배
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.177-182
    • /
    • 2004
  • Electronic products are subjected to many different types of shock environment. As the Optical Disc Drive (ODD) market grows, the number of failures related to shock increases. Therefore, it is necessary to improve the performance of cushion package as well as the product design. Cushion materials such as expanded polystyrene are often used to protect electronic products from shock environment. In this paper, the drop analysis of the cushion package f3r optical disc drives was carried out with the explicit method of LS-DYNA and verified by the drop test. For the optimization of package, response surface approximation model was created using central composite design. As a result, cushioning performance was improved under the critical condition and practical design guidelines of cushion package were suggested.

  • PDF

Characteristics of Hybrid Optical Pickup Actuator at High Temperature (하이브리드형 광픽업 액추에이터의 고온특성)

  • Lee, Jin-Won;Kim, Kwang;Cheong, Young-Min;Kim, Dae-Whan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.1010-1014
    • /
    • 2002
  • A new type actuator has been designed and investigated to overcome thermal problems in slim optical disc drive which is adopted in mobile storage devices. Recently, in optical storage device technical trends, the size of optical disc drives is slimmer to adopt notebook computer and the spindle rotate velocity is faster to achieve high transfer rate and the power of actuator is higher to perform tilting, etc. However, these trends of optical disc drives tend to raise the environment temperature of drives, actuator power and parts temperature. Moreover, it is more difficult to remove the heat inside a drive and the temperature of an actuator increases and drive slims. As a result, increase of surface temperature of actuator body caused that second resonance of an actuator moves down to a lower frequency band and the performance of optical parts also deteriorates. Especially objective lens, coil and magnet of the actuator parts are easily damaged. To manage these thermal problems, in this paper an actuator with a hybrid blade, which is composed of vectra which has low thermal conductivity and magnesium which has high thermal conductivity, has been suggested and verified. Despite the high temperature environment, the proposed actuator showed good dynamic performance.

  • PDF

Shock Response Analysis of the Optical Disk Drive in consideration of Disk and Pick up (디스크와 픽업을 고려한 광디스크드라이브의 충격응답해석)

  • 신은정;장영배;박노철;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.183-188
    • /
    • 2004
  • Nowadays optical disc drives have become necessary. As the equipment is popular to use, competition of price and rotating rate have been harder and harder. Shock response analysis for the optical disk drives is rarely studied. In this paper the optical disk drive has 5-DOF system and each motion is presented by using Lagrange Equation. As the motion of the Pick up lens is important to read and write data, it needs to consider the pickup and disk. The lumped parameter model is compared with finite element model in order to make sure of the result. Results of the shock response analysis from various shock inputs are gotten.

  • PDF

Robust Output Regulator with Frequency Adaptation Algorithm for Optical Disc Drives (광디스크를 위한 주파수 적응 알고리즘과 함께하는 강인 출력 제어기)

  • Kim, Sang-Hyun;Kim, Hyung-Jong;Shim, Hyung-Bo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.4
    • /
    • pp.17-24
    • /
    • 2011
  • This paper presents a control scheme to cancel periodic disturbance with unknown frequency for optical disc drives. The control scheme consists of an output regulator and a frequency adaptive algorithm. Here, the frequency adaptive algorithm based on IMP plays a role in obtaining a frequency of periodic disturbance. The stability analysis of whole system and disturbance rejection performance are proven by the singular perturbation theory. The contribution of this paper are as follows. (1) There is no design constraints of the frequency range. (2) Ability for perfect disturbance rejection is preserved even with uncertain plant model.

Characteristics of hybrid optical pickup actuator at high temperature (하이브리드형 광픽업 액추에이터의 고온 특성)

  • Lee, Jin-won;Cheong, Young-min;Kim, Kwang;Kim, Dae-whan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.398.1-398
    • /
    • 2002
  • A new type actuator has been designed and investigated to overcome thermal problems in slim optical disc drives adopted in mobile storage devices. As the size of optical disc drives decreases, it is more difficult to remove the heat inside a drive and the temperature of an actuator increases. As a result, the second resonance of an actuator moves down to a lower frequency band and the performance of optical parts also deteriorates. (omitted)

  • PDF