• 제목/요약/키워드: Optical Fiber Sensors

검색결과 372건 처리시간 0.021초

복합재료 적층판에 삽입된 광섬유 센서의 기계적 특성에 관한 연구 (A study on the mechanical behavior of the optical fiber sensors embedded in the composite laminate)

  • 신금철;이정주;권일범
    • 센서학회지
    • /
    • 제8권6호
    • /
    • pp.440-447
    • /
    • 1999
  • 지능형 복합재료 구조물(Smart Composite Structures) 사용 시 부하되는 인장하중과 복합재료의 경화 시 발생하는 열하중은 복합재료 내에 삽입된 광섬유 센서의 기계적 거동에 직접적인 영향을 미친다. 게다가 복합재료의 적층 순서 및 코팅층의 유무에 따라 광섬유 센서 내의 웅력 분포는 달라지게 된다. 또한, 복합재료 적층판 내에서 발생된 균열은 적층판 전체의 파괴뿐만 아니라 광섬유 센서의 파괴에 큰 영향을 미치게 된다. 그러므로, 본 연구에서는 인장하중 및 열하중이 가해지는 복합재료 적층판 내에 삽입된 광섬유 센서의 응력분포를 유한요소해석을 통해 알아보고, 복합재료 적층판의 적층 순서에 따른 영향과 광섬유 센서에 코팅을 하였을 경우 광섬유 센서 내의 응력분포에 미치는 영향을 알아보았다. 또, 인장실험을 통하여 적층판 내에서 발생한 균열이 광섬유 센서의 파괴에 미치는 영향을 알아보았다.

  • PDF

콘크리트에 매설된 구조물 유지관리용 Fabry-Perot 광섬유 센서의 거동 (Begavuir if Embedded intrinsic Fabry-Perot Optical Fiber Sensors in the Cement Concrete Structure)

  • 김기수;유재욱;이승재;최롱;이웅종;김종우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1996년도 봄 학술발표회 논문집
    • /
    • pp.295-299
    • /
    • 1996
  • Intrinsic Fabry-Perot Optical fiber sensors were embedded to tensile side of the 20cm$\times$20cm$\times$150cm cement concrete structures. The sensors were attached to the reinforcing steels and then, the cement concretes were applied. It took 30 days for curing the specimens. After that, the specimens were tested with 4-point bending method by universal testing machine. Strains were measured and recorded by the strain gauges embedded near optical fiber sensors. Output data of fiber sensor showed good linearity to the strain data from the strain gauges up 2000microstrain. The optical fiber sensors showed good response after yielding of structure while embedded metal film strain gauges did not show any response. We also specimens were broken down. In conclusion, the optical fiber sensors can be used as elements of health monitoring systems for cement concrete infra-structures.

  • PDF

경량 구조물의 진통 및 변형 감지/제어를 위한 광섬유 센서 기술 (Fiber optic sensor technology for sensing/controlling vibration and deformation of lightweight structures)

  • 한재흥;강래형
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.157-163
    • /
    • 2006
  • Vibration and deformation sensing control of lightweight structures using optical fiber sensor technology is introduced in this presentation. This paper shows several examples of vibration control and deformation estimation for structures using these optical fiber sensor systems. Among various optical fiber sensors, in this paper, two types of optical fiber sensors, Fabry-Perot Interferometer(EFPI) and Fiber Bragg Grating(FBG) sensors, are mainly dealt with. Fiber optic sensors show many advantages over conventional strain gages for the measurement of vibration and deformation of lightweight structures.

  • PDF

Protection Method for Diameter-downsized Fiber Bragg Gratings for Highly Sensitive Ultraviolet Light Sensors

  • Seo, Gyeong-Seo;Ahn, Tae-Jung
    • Current Optics and Photonics
    • /
    • 제2권3호
    • /
    • pp.221-225
    • /
    • 2018
  • We suggested the use of miniature hollow glass tubes having high ultraviolet (UV) transmission characteristics for the protection of optical-fiber-type UV sensors. We have recently proposed a highly sensitive optical sensor in the UV spectral range, using a fiber Bragg grating (FBG) coated with an azobenzene polymer as the photoresponsive material. In this study, we used UV-transparent miniature glass tubes to protect the etched FBG with the azobenzene polymer coating. This technique will be very useful for protecting various fiber-based UV sensors.

표면부착된 분포형 광섬유 센서의 유한요소해석 (FEM Analysis of Distributed Optical Fiber Sensors for the Strain Transfer)

  • 김상훈;이정주;권일범;허증수
    • 센서학회지
    • /
    • 제10권1호
    • /
    • pp.16-23
    • /
    • 2001
  • 국부적인 측정을 수행하는 일반적인 광섬유 센서에 비해 분포형 광섬유 센서는 광섬유의 길이방향을 따라 모든 위치에서 측정이 가능하며 보다 넓은 영역의 측정을 수행할 수 있다. 브릴루인 산란 분포형 광섬유 센서를 구조물의 건전성 감시에 이용할 때에는 광섬유 센서의 일반적인 부착 방법인 에폭시를 이용한 표면부착 방법을 사용하게 된다. 본 논문에서는 에폭시를 이용하여 브릴루인 분포형 광섬유 센서를 구조물의 표면에 부착하였을 때 구조물의 변형률 변화를 광섬유 센서가 정확히 측정해 낼 수 있는지에 대해 유한요소법을 통한 검증을 수행하였다. 구조물로부터 에폭시, 광섬유 코팅, 클래딩을 통해 코어로 전달되는 변형률의 전달률을 해석을 통해 확인하였으며 변형률 분포로부터 에폭시 끝 단의 자유 경계면이 미치는 영향을 살펴보았다.

  • PDF

구조물 유지관리용 간섭형 광섬유 센서 (Interferometric Optical Fiber Sensors for Health Monitoring Systems of Structures)

  • 김기수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 봄 학술발표회 논문집
    • /
    • pp.355-359
    • /
    • 1995
  • In this paper, the possibility of interferometric shows very good linearity to the strain. Fiber optic sensors have various merits for health monitoring systems. They are very small in diamerter. So, they don't give any disturbance in strength to the structures, Optical fiber sensors are innert to the electro-magnetic field. Therefore, fiber optic sensors give us a good solution to the electro-magnetic field. Therefore, fiber optic sensors give us a good solution to the maintainance systems of the structures, which are exposed to the electric fields, such as bridges, dams and buildings.

  • PDF

광강도형 광섬유 센서를 이용한 복합재 적충판의 피로손상 감시 (Monitoring of Fatigue Damage of Composite Laminates Using Embedded Intensity-Based Optical Fiber Sensors)

  • 이동춘;이정주;서대철
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 추계학술발표대회 논문집
    • /
    • pp.124-127
    • /
    • 2000
  • In this study, a technique for monitoring of fatigue damage of composite laminates by measuring the stiffness change using embedded intensity-based optical fiber sensors was investigated. Firstly, the underlying measurement principle and structure of intensity-based sensors and then a simple stiffness conversion process was explained. The monitoring technique was evaluated by fatigue tests of composite laminates with an embedded intensity-based sensor. From the test results, the response of the intensity-based sensor showed good correlation with that of surface mounted extensometer. Therefore, it can be concluded that the intensity-based sensors have good potential for the monitoring of fatigue damage of composite structures under fatigue loading. In addition, it could be confirmed that the intensity-based sensors have higher resistance to fatigue than the commercial electrical strain gauge.

  • PDF

광섬유 센서에 의한 말뚝 하중전이 측정 (Measurement of Pile Load Transfer using Optical Fiber Sensors)

  • 오정호;이원제;이우진
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.397-404
    • /
    • 1999
  • It is essential to measure load transfer mechanism of pile to check the appropriateness of assumptions made for design purpose and to continuously monitor the behavior of pile foundation. Through many attempts to monitor the behavior of super-structure in civil engineering area using several optical fiber sensors have been made, application of optical fiber sensor technology on pile foundation has not been tried up to now. Load transfer of model piles during compression loading was measured by optical fiber sensors and compared with the measurement by strain gauges. Fiber Bragg Grating(FBG) sensor system was used since it has many advantages, such as easy multiplexing, high sensitivity, and simple fabrication. Besides the model pile tests, uniaxial tension test of steel bar and compression tests of mortar specimen were carried out to evaluate the performance of FBG sensors in embedded environments. The shift of refilming wavelength due to the strain in FBG sensor is converted to the strain at sensor location and the dependence between them is 1.28 pm/${\mu}$ strain. FBG sensors embedded in model pile showed a better survivability than strain gauges. Measured results of load transfer by both FBG sensors and strain gauges were similar, but FBG sensors showed a smoother trend than those by strain gauge. Based on the results of model pile test, it was concluded that the use of FBG sensor for strain measurement in pile has a great potential for the analysis of pile load transfer.

  • PDF

지그비 기반 센서 네트워크를 이용한 침수감지용 광 이중센서 개발 (Development of optical dual-sensors for submersion monitoring using zigbee-based wireless sensor networks)

  • 계광현;김형표;손경락
    • 센서학회지
    • /
    • 제19권3호
    • /
    • pp.184-190
    • /
    • 2010
  • In this paper, a remote submersion warning system based on multi-mode optical fiber(MMF) sensors and a wireless sensor network(WSN) are proposed. To improve the reliability and stability of the sensors, the dual optical fiber sensors combined to the optical coupler are demonstrated. A slave zigbee as a wireless sensor module was used as a platform to monitor and record the signal from the MMF sensors and then transmits these information to a master zigbee wirelessly. The monitoring system running the $LabVIEW^{(R)}$ software was connected to the internet to support the short message service(SMS) through extensible markup language(XML) web service. No matter where the managers are, they can always receive the real-time remote-monitoring data for safety check.

Sensing properties of optical fiber sensor to ultrasonic guided waves

  • Zhou, Wensong;Li, Hui;Dong, Yongkang;Wang, Anbang
    • Smart Structures and Systems
    • /
    • 제18권3호
    • /
    • pp.471-484
    • /
    • 2016
  • Optical fiber sensors have been proven that they have the potential to detect high-frequency ultrasonic signals, in structural health monitoring field which generally refers to acoustic emission signals from active structural damages and guided waves excited by ultrasonic actuators and propagating in waveguide. In this work, the sensing properties of optical fiber sensors based on Mach-Zehnder interferometer were investigated in the metal plate. Analytical formulas were conducted first to explore the parameters affecting its sensing performances. Due to the simple and definable frequency component, the Lamb wave excited by the piezoelectric wafer was employed to study the sensitivity of the proposed optical fiber sensors with respect to the frequency, rather than the acoustic emission signals. In the experiments, according to above investigations, spiral shape optical fiber sensors with different size were selected to increase their sensitivity. Lamb waves were excited by a circular piezoelectric wafer, while another piezoelectric wafer was used to compare their voltage responses. Furthermore, by changing the excitation frequency, the tuning frequency characteristic of the proposed optical fiber sensor was also investigated experimentally.