• Title/Summary/Keyword: Optical System Design

Search Result 1,328, Processing Time 0.034 seconds

Optical system design for compact digital still camera using diffractive optical elements (회절광학소자를 이용한 컴팩트 디지털 스틸 카메라용 광학계 설계)

  • 박성찬
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.4
    • /
    • pp.239-245
    • /
    • 2000
  • In this paper, the fundamental properties of diffractive optical element were investigated. Also, this work deals with theoretical approaches for achromatization in DOE's optical system based on thin lens theory. It is found that achromatization could be satisfied by one hybrid lens only, which is composed of a diffractive and a refractive element. In order to have compact optical system, we used the tele-photo type lens composed of a positive and a negative power elements instead of retro-focus lens. From the Gaussian brackets and Seidel aberration theory, the initial design was numerically obtained. The aberration properties of an initial design was aplanat and flat field. In order to correct the chromatic aberrations, refractive and diffractive elements were used on front element. This hybrid lens is also useful for correction of higher order aberrations. Compared to conventional design composed of refractive lenses only, this approach dramatically improved the compactness of the optical system. Finally, residual aberration balancing results in a lens with focal length of 3.89 mm and overall length of 5.19 mm, which has enough performance over an f-number of 4.0. Also, it is expected to fulfill all the requirements of a digital still camera lens. This optical system is superior to the current refractive lens system in the number of elements, weight, and aberration properties. rties.

  • PDF

Double-Gauss Optical System Design with Fixed Magnification and Image Surface Independent of Object Distance (물체거리가 변하여도 배율과 상면이 고정되는 이중 가우스 광학계의 설계)

  • Ryu, Jae Myung;Ryu, Chang Ho;Kim, Kang Min;Kim, Byoung Young;Ju, Yun Jae;Jo, Jae Heung
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.1
    • /
    • pp.19-27
    • /
    • 2018
  • A change in object distance would generally change the magnification of an optical system. In this paper, we have proposed and designed a double-Gauss optical system with a fixed magnification and image surface regardless of any change in object distance, according to moving the lens groups a little bit to the front and rear of the stop, independently parallel to the direction of the optical axis. By maintaining a constant size of image formation in spite of various object-distance changes in a projection system such as a head-up display (HUD) or head-mounted display (HMD), we can prevent the field of view from changing while focusing in an HUD or HMD. Also, to check precisely the state of the wiring that connects semiconductor chips and IC circuit boards, we can keep the magnification of the optical system constant, even when the object distance changes due to vertical movement along the optical axis of a testing device. Additionally, if we use this double-Gauss optical system as a vision system in the testing process of lots of electronic boards in a manufacturing system, since we can systematically eliminate additional image processing for visual enhancement of image quality, we can dramatically reduce the testing time for a fast test process. Also, the Gaussian bracket method was used to find the moving distance of each group, to achieve the desired specifications and fix magnification and image surface simultaneously. After the initial design, the optimization of the optical system was performed using the Synopsys optical design software.

Wide-angle optical design using high-resolution uncooled thermal detector

  • Lee, Jonghoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.11
    • /
    • pp.31-37
    • /
    • 2017
  • In this paper, we propose efficient design and construction of an infrared wide angle optical system with low distortion utilizing a high resolution detector for automobile application. The operational convenience and the recognition ability have been improved significantly by applying the high resolution uncooled thermal detector with wide angle optical design. The active ahtermalization mechanism is implemented so that the adjustment of the optical component of the system is to be made automatically according to the temperature change by motorized control. The modulation transfer function (MTF) is about 50% at the Nyquist frequency close the diffraction limit. The distortion is less than 5% at the edge field. As a result, a high-resolution uncooled thermal optical system with wide field of view (FOV) is assembled, aligned and its performance is tested successfully.

The Effectiveness Analysis Due to the Use of Lagrange Equation and the Optimization Technology for Design of the Support Structure of the Optical Mirror System (광학거울 시스템의 지지구조 설계를 위한 라그랑지 방정식과 최적화 기법 적용에 의한 효과분석)

  • Gimm, Hak In;Nam, Byoung Uk;Kim, Gwang Tae;Kim, Byung Un
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.264-278
    • /
    • 2018
  • The support structure of an optical mirror system is the one of the important design elements because the one affects the optical aberrations of the mirror surface. In this paper, Lagrange equation of the moving body of the fast steering mirror system(FSM) has been formulated to use with optimization design. Major goals for optimization are to assign the reasonably flexible stiffness to the structure and to enhance the first natural frequency of the mirror and support system in aid of more affordable control bandwidth for the FSM. Pursuing these purposes with the proposed method, the finite element analysis(FEA), optimization technique and the Zernike polynomial estimation are used for the design effects. It is concluded that the proposed approach for design well guides toward the desired design goals with regards to both structural and optical performances.

Lens Design For Microdisplay System With Multi-Mirrors (마이크로디스플레이시스템에서의 멀티미러를 갖는 렌즈 설계)

  • 김혜경;윤동준;신승연;송문빈;김성호;박광범;최성호;문현찬
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2002.11a
    • /
    • pp.100-101
    • /
    • 2002
  • This paper show lens design and simulation for microdisplay system with two mirror, Lens design optimized consider to spherical aberration, astigmatism, distortion, and chromatic aberration.

  • PDF

Illumination system design for the liquid crystal display projector using fly-eye lenses (Fly-eye lens를 사용하는 액정 projector용 조명 광학계의 설계)

  • 류재명;조재흥;정진호;이종진
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.3
    • /
    • pp.173-181
    • /
    • 2002
  • The principle of an illumination system including fly-eyes lenses for a liquid crystal display (LCD) projector with 3-panels was presented and its optical system was designed by using the OSLO (premium edition 6.1) optical system design program. Two panels of the illumination system are well aligned for so that the illumination path length is the same, and the third panel has a longer pass length than the others. The two illumination types with the same or different illumination path lengths were derived by using the paraxial ray design method. Refraction powers and positions of each lens were analytically determined by the method, and the damped least square method was utilized to obtain the optimized uniform illumination system.

Repetitive Control for the Track-Following Servo System of an Optical Disk Drive (광 디스크 드라이브의 트랙 추종 서보 시스템을 위한 반복 제어)

  • 문정호;이문노;정명진
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.1
    • /
    • pp.39-46
    • /
    • 1999
  • Disturbances acting on the track-following servo system of an optical disk drive inherently contain significant periodic components that cause tracking errors of a periodic nature. Such disturbances can be effectively rejected by employing a repetitive controller, which must be implemented carefully in consideration of system stability. Plant uncertainty makes it difficult to design a repetitive controller that will improve tracking performance yet preserve system stability. In this paper, we examine the problem of designing a repetitive controller for an optical disk drive track-following servo system with uncertain plant coefficients. We propose a graphical design technique based on the frequency domain analysis of linear interval systems. This design method results in a repetitive controller that will maintain system stability against all admissible plant uncertainties. We show simulation and experimental results to verify the validity of the proposed design method.

  • PDF

Design of Optical Path for Small Form Factor Optical Disk Drive and Fabrication of Micro-Compensatory Lens (초소형 광 정보 저장 기기를 위한 광 경로 설계 및 마이크로 보정 렌즈 제작)

  • 김홍민;정경성;최우재;박노철;강신일;박영필
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.115-118
    • /
    • 2002
  • The purpose of this paper is to design a pick-up for the small form factor optical disk drive and to fabricate a micro-compensatory lens for the pick-up using the micro-compression molding process. At design stage, the optical elements including the objective lens and the compensatory lens are miniaturized. The height of pick-up and free working distance are designed as 2mm and 0.2% respectively. To analyze the fabricated micro-compensatory lens, the system was analyzed using the surface profile of the fabricated micro-compensatory lens and CODE V which is commercial software. The RMS wave front aberration of the system using fabricated micro-compensatory lens is 0.01677λ which is lower than Marechal's criterion, 0.07λ.

  • PDF

Optical System with 4 ㎛ Resolution for Maskless Lithography Using Digital Micromirror Device

  • Lee, Dong-Hee
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.266-276
    • /
    • 2010
  • In the present study, an optical system is proposed for maskless lithography using a digital micromirror device (DMD). The system consists of an illumination optical system, a DMD, and a projection lens system. The illumination optical system, developed for 95% uniformity, is composed of fly's eye lens plates, a 405 nm narrow band pass filter (NBPF), condensing lenses, a field lens and a 250W halogen lamp. The projection lens system, composed of 8 optical elements, is developed for 4 ${\mu}m$ resolution. The proposed system plays a role of an optical engine for PCB and/or FPD maskless lithography. Furthermore, many problems arising from the presence of masks in a conventional lithography system, such as expense and time in fabricating the masks, contamination by masks, disposal of masks, and the alignment of masks, may be solved by the proposed system. The proposed system is verified by lithography experiments which produce a line pattern with the resolution of 4 ${\mu}m$ line width.

Optical Design for UVOMPIS and Design Concept of the Mirror Holder

  • Park, Woojin;Chang, Seunghyuk;Pak, Soojong;Han, Jimin;Ahn, Hojae;Lee, Sunwoo;Kim, Geon Hee;Lee, Dae-Hee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.66.3-66.3
    • /
    • 2020
  • We present the optical design of Linear Astigmatism Free - Three Mirror System (LAF-TMS) D200 for UVO-Multiband Polarizing Imager System (UVOMPIS). LAF-TMS D200 is the off-axis wide-field telescope with EPD = 200 mm, F/2, and Field of View (FoV) = 2° × 4°. Its optical mirrors are optimized to freeform surfaces for high-quality optical performance over a wide FoV. The proposed mirror holder consists of four aluminum optomechanical modules that have applied for LAF-TMS D150 which is a prototype of the LAF-TMS system. It can accurately mount mirrors and also can sustain from vibration environments. As a feasibility study, quasi-static, modal, harmonic, and random vibration analyses have been performed to LAF-TMS D150 optomechanical structure under the qualification level of the Soyuz-2/Fregat launch system. We evaluate the vibration analysis results in terms of von Mises stress and Margin of Safety.

  • PDF