• Title/Summary/Keyword: Optical System Design

Search Result 1,329, Processing Time 0.032 seconds

Design and Evaluation of An Electromagnetic Driven Actuator for Near-field Optical Recording System (근접장 광기록 시스템용 전자기구동 액추에이터의 설계 및 평가)

  • 김석중;이용훈;이철우;서중언
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.11
    • /
    • pp.2732-2741
    • /
    • 2000
  • Combination of magnetic recording technology and optical recording technology such as Near Field Optical Recording is watched recently. In order to accomplish this technology, the development of an electromagnetic driven mm-sized mirror shifting laser beam in track direction have to needed. In Near Field Optical Recording System, shifting laser beam in track direction mean as fine tracking and means as coarse tracking. Therefore in Near Field Optical Recording, 2-stage actuator is composed of servo controller in reading or recording information on disc layer. In our research, through design and simulation process of driven mm-sized mirror, we arrange systematically design process of driven mm-sized mirror having good frequency transfer characteristics. Design and simulation processes included modal analysis of spring, calculation of magnetic moment according to the number of turns and geometric configuration of coil and magnetic circuit analysis meaning that calculation of magnetic flux density in air gap of magnetic circuit. After that we design and make parts of driven mm-sized mirror, assemble and evaluate our electriomagnetic driven mm-sized mirror. we compared design values with actual characteristic values and present solution scheme. Through these processes we performed manufacturing of an electromagnetic driven mm-sized mirror having good frequency-domain characteristics and high sensitivity characteristics.

Simple Graphical Selection of Optical Materials for an Athermal and Achromatic Design Using Equivalent Abbe Number and Thermal Glass Constant

  • Kim, Young-Ju;Kim, Yeong-Sik;Park, Sung-Chan
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.182-187
    • /
    • 2015
  • This paper presents a new graphical method for selecting a pair of optical glasses to simultaneously achromatize and athermalize an imaging lens made of materials in contact. An athermal glass map that plots thermal glass constant versus inverse Abbe number is derived through analysis of optical glasses and plastic materials in visible light. By introducing the equivalent Abbe number and equivalent thermal glass constant, although it is a multi-lens system, we have a simple way to visually identify possible optical materials. Applying this method to design a phone camera lens equipped with quarter inch image sensor having 8-mega pixels, the thermal defocuses over $-20^{\circ}C$ to $+60^{\circ}C$ are reduced to be much less than the depth of focus of the system.

A Study of the Design of Automotive Communication Lamps Using Microlens Arrays (Microlens Array를 이용한 자동차 커뮤니케이션 램프 설계 방안 연구)

  • Seo, Jae-Yeong;Lee, Hyun-Hwa;Kong, Mi-Seon;Choi, Hwan-Young;Jung, Mee-Suk
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.3
    • /
    • pp.101-107
    • /
    • 2021
  • In this paper, a study of the design of automotive communication lamps using microlens arrays (MLAs) was conducted. With the development of autonomous driving technology, automobiles need communication lamps to communicate with pedestrians. To reduce the size of the optical system and secure high light intensity, the communication lamp's optical system was designed using an MLA. In addition, to secure a clear image on inclined ground, the design was carried out considering the overlap method. After that, the improved performance was confirmed by comparing it to the MLA optical system before overlapping.

Design and Performance of a Catadioptric Omnidirectional Zoom Optical System Using a Hybrid Lens for Visible Light (가시광에서 하이브리드 렌즈를 사용한 반사굴절식 전방위 줌 광학계의 설계 및 성능평가)

  • Park, Hyun Sik;Jo, Jae Heung
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.2
    • /
    • pp.96-104
    • /
    • 2020
  • A catadioptric omnidirectional zoom optical system using a hybrid lens (COZOSH) that performs simultaneously two functions of a lens and a mirror was designed at the visible wavelength range for daytime unmanned surveillance, and its performance was analyzed. The hybrid lens has lots of advantages in terms of fabrication and assembly of a COZOSH, because of the obviation of a lens boring process and reduction of the number of optical components. Additionally, we designed the COZOSH to expand the compressed inner-image region of a donut image at low spatial frequencies. As a result, the optimized design performance of the optical system that satisfies all initial design specifications was obtained from calculation of the modulation transfer function, spot diagram, and tolerance analysis. We confirmed that the COZOSH is a passively athermalized optical system under conditions of temperature variation from -30℃ to 50℃, by using athermalization analysis during zooming.

A Study on the Design and Development of Automatic Optical Fiber Aligner (자동 광섬유 정렬 장치의 설계 및 제작에 관한 연구)

  • Kim, Byung-Hee;Uhm, Chul;Choi, Young-Suk
    • Journal of Industrial Technology
    • /
    • v.22 no.B
    • /
    • pp.241-249
    • /
    • 2002
  • Optical fiber is indispensable for optical communication systems that transmit large volumes of data at high speed, but super precision technology in sub-micron units is required for optical axis adjustment. We developed the automatic optical fiber by image processing and automatic loading system. we have developed 6-axis micro stage system for I/O optical fiber arrays, the initial automatic aligning system software for a input optical array by the image processing technique, fast I/O-synchronous aligning strategy, the automatic loading/unloading system and the automatic UV bonding mechanism. In order to adjust the alignment it used on PC based motion controller, a $10{\mu}m$ repeat-detailed drawing of automatic loading system is developed by a primary line up for high detailed drawing. Also, at this researches used the image processing system and algorithm instead of the existing a primary hand-line up and fiber input array and waveguide chip formed in line by automatic.

  • PDF

Design and Fabrication of Microlens Illuminated Aperture Array for Optical ROM Card System (Optical Card 시스템에서의 마이크로렌즈 조사 광프로브 어레이 설계 및 제작)

  • Kang, Shin-Ill;Kim, Seok-Min;Kim, Hong-Min;Lee, Jee-Seung;Lim, Ji-Seok;Busch, Christopher
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • An optical ROM card system which using an optical probe array generated by Talbot effect was proposed as new robust storage solution. To improve the optical density and to decrease the power consumption of the system, it is very important to make the spot sizes of optical probes smaller as well as to increase the optical efficiency from the light source to optical probes. In this study, a microlens illuminated aperture array for generating high efficiency optical probe away with small beam spot was designed and fabricated using monolithic lithography integration method. The maximum intensity of optical probes of microlens illuminated aperture array increased about 12 times of that of aperture array, and the full width half maximum of the optical probe at Talbot plane generated by microlens illuminated aperture array was $0.77{\mu}m$.

  • PDF

A Design of Mid-wave Infrared Integral Catadioptric Optical System with Wide FOV

  • Yu, Lin Yao;Jia, Hong Guang;Wei, Qun;Jiang, Hu Hai;Zhang, Tian Yi;Wang, Chao
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.142-147
    • /
    • 2013
  • In order to deduce the difficulty of fixing the Ritchey-Chretien (R-C) dual reflective optical system and enhance the stability of the secondary mirror, a compact integral structure is presented here composed of two transmitting and two reflective aspheric surfaces. The four surfaces were manufactured from a single germanium lens and integrated together. The two reflective surfaces formed by coating the inner reflecting films were assembled in one lens. It makes the installation of the two mirrors easier and the structure of the secondary mirror more stable. A design of mid-wave infrared (MWIR) compact imaging system is presented with a spectral range chosen as $3.7-4.8{\mu}m$. The effective focal length is f=90 mm. The field of view (FOV) for the lens is $4.88^{\circ}$. It has good imaging capability with Modulation Transfer Function (MTF) of all field of view more than 0.55 close to the diffraction limitation. Outdoor experiments were carried out and it is shown that the integral catadioptric optical system performs well on imaging.

Design of Optical Pickup Actuator (광 디스크 드라이브의 픽업 액츄에이터 설계)

  • 조유호;조석환;오재견;최영석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.635-639
    • /
    • 1997
  • In order to design a system a process or plant must be put into a mathematical form for analysis and evaluation, and an appropriate controller must be designed to attain the desired system response. In this paper, the mathematical model for an optical pickup actuator is proposed and an H .inf. controller is employed to obtain the optimal focusing/tracking servo system behavior. Simulation and experiments are carried out to verify the performance of the proposed model.

  • PDF

A Design of the Optical Fiber Subscriber Receive System for the Wideband Home Network Services (광대역 홈 네트워크 서비스를 위한 광 가입자 수신 시스템 설계)

  • Song, Hong-Jong
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.9 no.2
    • /
    • pp.56-67
    • /
    • 2010
  • Optical fiber subscriber receive communication system is a core technology of multimedia home networks because it provides the high-level quality of data and services. This paper executes an analysis and research on this communication systems and presents the theoretical background for the purpose of understanding the optical communication system principal and explaining signal process flows to divide each block for the implementing ASIC design.

  • PDF

Design and Analysis of a 10× Optical Zoom System for an LWIR Camera

  • Ok, Chang-Min;Park, Sung-Chan
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.574-581
    • /
    • 2014
  • This paper presents the design and evaluation of the optical zoom system for an LWIR camera. The 12.8operating wavelength range of this system is from $7.7{\mu}m$ to $12.8{\mu}m$. Through a paraxial design and optimization process, we have obtained the extended four-group inner-focus zoom system with focal lengths of 10 to 100 mm, which consists of the six lenses including four aspheric surfaces and two diffractive surfaces. The diffractive lenses were used to balance the higher-order aberrations, and its diffraction properties were evaluated by scalar diffraction theory. We have calculated the polychromatic integrated diffraction efficiency and the MTF drop generated by background noise. The f-number of the zoom system is F/1.4 at all positions. Fields of view are given by $51.28^{\circ}{\times}38.46^{\circ}$ at wide field and $5.50^{\circ}{\times}4.12^{\circ}$ at narrow field positions. In conclusion, this design procedure results in a $10{\times}$ compact zoom lens system useful for an LWIR camera.