• Title/Summary/Keyword: Optical fiber

Search Result 3,075, Processing Time 0.033 seconds

Characterization of both adhesion and interfacial interaction between optical fiber coating and structural

  • Brotzu, A.;Felli, F.;Fiori, L.;Caponero, M.A.
    • Smart Structures and Systems
    • /
    • v.4 no.4
    • /
    • pp.439-448
    • /
    • 2008
  • Optical fiber sensors are by now broadly accepted as an innovative and reliable device for structural health monitoring, to be used either embedded into or bonded on structures. The accuracy of the strain measurement achievable by optical fiber sensors is critically dependent on the characteristics of the bonding of the various interface layers involved in the sensor bonding/embedding (structure material and gluing agent, fiber coating and gluing agent, fiber coating and fiber core). In fact, the signal of the bonded/embedded optical fiber sensor must correspond to the strain experienced by the monitored structure, but the quality of each involved interface can affect the strain transfer. This paper faces the characterization, carried on by both mechanical tests and morphological analysis, of the strain transfer function resulting with epoxidic and vinylester gluing agent on polyimide and acrylate coated optical fibers.

Online Strain Measurement at Multiple Points on a Rotating Blade with Fiber Bragg Grating Sensors and a Rotary Optical Coupler (광섬유 격자 센서와 회전 광학 커플러를 사용한 회전하는 블레이드 여러 지점에서의 온라인 변형률 측정)

  • Lee, Jong-Min;Hwang, Yo-Ha
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.1
    • /
    • pp.77-82
    • /
    • 2008
  • Strain-gauges have been dominantly used to measure strain at various points on a rotor, however, either a slip ring or telemetry has to be used to send sensor signals to data acquisition instruments at stationary side. Both slip ring and telemetry have numerous inherent problems which force severe limitations in real applications. This paper introduces a new rotor condition monitoring system using FBG(Fiber Bragg Grating) sensors and a rotary optical coupler. A single optical fiber with many FBG sensors is installed on the rotor and an optical dynamic interrogator is installed at stationary side. The sensor signal connection between rotating part and stationary part is made by the rotary optical coupling method which makes use of light's unique characteristic-light travels through space. Broad band light source from the interrogator travels to the optical fiber on the rotor and reflected FBG sensor signals travel back to the optical fiber on stationary side and are connected to the interrogator. Rotary optical coupler's insertion loss change due to rotation is compensated by using a reference sensor installed at the center of the rotor. The proposed system's performance has been successfully demonstrated by accurately measuring strains at 5 points on a blade rotating at high speed.

The development of automatic optical aligner with using the image processing (Image Processing을 이용한 자동 광 정렬 장치 개발)

  • Um, Chul;Kim, Byung-Hee;Kim, Sung-Geun;Choi, Young-Seok
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.536-539
    • /
    • 2002
  • In this paper, we developed the automatic optical fiber aligner by image processing and automatic loading system. Optical fiber is indispensable for optical communication systems that transmit large volumes of data at high speed, but super-precision technology in sub-micron units is required for optical axis adjustment, we have developed 6-axis micro stage system for I/O optical fiber arrays, the initial automatic aligning system/software for a input optical array by the image processing technique, fast I/O-synchronous aligning strategy, the automatic loading/unloading system and the automatic UV bonding mechanism. In order to adjust the alignment it used on PC based motion controller, a $10\mu\textrm{mm}$ repeat-detailed drawing of automatic loading system is developed by a primary line up for high detailed drawing. Also, at this researches used the image processing system and algorithm instead of the existing a primary hand-line up. and fiber input array and waveguide chip formed in line by automatic. Therefore, the developed and manufactured optical aligning system in this research fulfills the great role of support industry for major electronics manufacturers, telecommunications companies, universities, government agencies and other research institutions.

  • PDF

Fiber Optics for Multilayered Optical Memory

  • Kawata, Yoshimasa;Tsuji, Masatoshi;Inami, Wataru
    • Transactions of the Society of Information Storage Systems
    • /
    • v.7 no.2
    • /
    • pp.53-59
    • /
    • 2011
  • We have developed a compact and high-power mode-locked fiber laser for multilayered optical memory. Fiber lasers have the potential to be compact and stable light sources that can replace bulk solid-state lasers. To generate high-power pulses, we used stretched-pulse mode locking. The average power and pulse width of the output pulse from the fiber laser that we developed were 109 mW and 2.1 ps, respectively. The dispersion of the output pulse was compensated with an external single-mode fiber of 2.5 m length. The pulse was compressed from 2.1 ps to 93 fs by dispersion compensation. The fiber laser we have developed is possible to use as a light source of multilayered optical memory. We also present a fiber confocal microscope as an alignment-free readout system of multilayered optical memories. The fiber confocal microscope does not require fine pinhole position alignment because the fiber core is used as the point light source and the pinhole, and both of which are always located at the conjugated point. The configuration reduces the required accuracy of pinhole position alignment. With these techniques we can present an all-fiber recording and readout system for multilayered memories.

Temperature Compensation of a Strain Sensing Signal from a Fiber Optic Brillouin Optical Time Domain Analysis Sensor

  • Kwon, Il-Bum;Kim, Chi-Yeop;Cho, Seok-Beom;Lee, Jung-Ju
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.106-112
    • /
    • 2003
  • In order to do continuous health monitoring of large structures, it is necessary that the distributed sensing of strain and temperature of the structures be measured. So, we present the temperature compensation of a signal from a fiber optic BOTDA (Brillouin Optical Time Domain Analysis) sensor. A fiber optic BOTDA sensor has good performance of strain measurement. However, the signal of a fiber optic BOTDA sensor is influenced by strain and temperature. Therefore, we applied an optical fiber on the beam as follows: one part of the fiber, which is sensitive to the strain and the temperature, is bonded on the surface of the beam and another part of the fiber, which is only sensitive to the temperature, is located nearby the strain sensing fiber. Therefore, the strains can be determined from the strain sensing fiber while compensating for the temperature from the temperature sensing fiber. These measured strains were compared with the strains from electrical strain gages. After temperature compensation, it was concluded that the strains from the fiber optic BOTDA sensor had good coincidence with those values of the conventional electrical strain gages.

Remote Monitoring of Abrupt Overflowing in Common Utility Duct Using Reflective Side-Polished Optical Fiber Submersion Sensor

  • Lee, Cherl-Hee;Kim, Cheol;Kang, Shin-Won;Song, Jae-Won
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.3
    • /
    • pp.166-169
    • /
    • 2008
  • The submersion monitoring system based on a reflective side-polished optical fiber submersion sensor with an optical fiber mirror was shown to be an effective alarm system with remote monitoringwhen the drainage capacity of a common utility duct is exceeded due to heavy rainfall. The proposed sensor was connected to an existing installed optical fiber network at a height of 250mm in a common utility duct, and then tested under sample materials(distilled water, river water, sea water, foul water, muddy water, petroleum, edible oil) at a distance of 1km from the sensor for remote sensing. In experiments, the proposed real-time sensor system reduced maintenance cost and improved monitoring efficiency by using a reflection-type side-polished optical fiber submersion sensor efficient for remote monitoring of a common utility duct.

A Design and Fabrication of 565 Mbit/s Optical Fiber Transmission Link

  • Park, Mun-Su;Hwang, Jun-Am
    • ETRI Journal
    • /
    • v.9 no.2
    • /
    • pp.24-35
    • /
    • 1987
  • A Design and Fabrication of 565 Mbit/s Optical Fiber Transmission Link We calculated the transfer functions of optical channel components and formulated the optimum transfer function of optical receiver for optical transmission to show a design rule of fiber optical link for digital transmission. And we evaluated various causes of sensitivity degradation to determine the receiver specification. Also we fabricated and demonstrated a 565Mbit/s single mode fiber optic link, 27km, to show the practicality of designed fiber optic link. The output power of the transmitter was above -3dBm, and the sensitivity of the optical receiver was -37.8dBm which is the same value we expected. Also the dynamic range was more than 25dB.

  • PDF

THERMO-FLUID ANALYSIS ON THE HELIUM INJECTION COOLING OF GLASS FIBER FOR HIGH SPEED OPTICAL FIBER MANUFACTURING (광섬유 고속생산용 헬륨 주입식 유리섬유 냉각공정에 대한 열유동 해석)

  • Oh, I.S.;Kim, D.;Kwak, H.S.;Kim, K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.92-95
    • /
    • 2011
  • In manufacturing optical fibers, the process starts with the glass fiber drawing from the heated and softened silica preform in the furnace, and the freshly drawn glass fiber is still at high temperature when it leaves the glass fiber drawing furnace. It is necessary to cool down the glass fiber to the ambient temperature before it then enters the fiber coating applicator, since the hot glass fiber is known to cause several technical difficulties in achieving high quality fiber coating. As the fiber drawing speed keeps increasing, a current manufacturing of optical fibers requires a dedicated cooling unit with helium gas injection. A series of three-dimensional flow and heat transfer computations are carried out to investigate the effectiveness of fiber cooling in the fiber cooling unit. The glass fiber cooling unit is simplified into the long cylindrical enclosure at which the hot glass fiber passes through at high speed, and the helium is being supplied through several injection slots of rectangular shape along the cooling unit. This study presents and discusses the effects of helium injection rates on the glass fiber cooling rates.

  • PDF

Irradiance Distribution Analysis of Inclined-cut Multi-mode Optical Fiber for Optical Microphone Design (광 마이크로폰 설계를 위한 경사 절단된 멀티모드 광섬유의 조도분포 해석)

  • Kim, Kyong-Woo;Che, Woo-Seong;Kwon, Hyu-Sang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.693-698
    • /
    • 2008
  • For designing intensity modulation type optical microphone, the irradiance distribution which can be applied to inclined-cut geometrical configuration is suggested. The model is important in analysis of response characteristics f3r intensity modulation type optical microphone. To overcome low sensitivity problem in intensity modulation type optical microphone, inclined-cut optical fiber is considered here. Based on optical geometry, the inclined-cut optical fiber sensor is designed and fabricated. The experiments are carried out to evaluate sensor performance.

  • PDF