• Title/Summary/Keyword: Optimal Control

Search Result 7,305, Processing Time 0.032 seconds

OPTIMAL CONTROL OF SYSTEMS OF PARABOLIC PDES IN EXPLOITATION OF OIL

  • Li, Chunfa;Feng, Enmin;Liu, Jinwang
    • Journal of applied mathematics & informatics
    • /
    • v.13 no.1_2
    • /
    • pp.247-259
    • /
    • 2003
  • Optimal control problem for the exploitaton of oil is investigated. The optimal control problem under consideration in this paper is governed by weak coupled parabolic PDEs and involves with pointwise state and control constraints. The properties of solution of the state equations and the continuous dependence of state functions on control functions are investigated in a suitable function space; existence of optimal solution of the optimal control problem is also proved.

Identification and Control of Position Control System for Electro-Hydraulic Actuator (EHA) (EHA(Electro-Hydrostatic Actuator) 위치제어 시스템의 모델링 및 제어)

  • Park, Y.H.;Park, S.H.
    • Journal of Power System Engineering
    • /
    • v.15 no.2
    • /
    • pp.69-77
    • /
    • 2011
  • In this paper, an optimal PID sliding mode controller is proposed for the position control of electro-hydrostatic actuator(ERA) systems with system uncertainties and saturation in the motor. An ERA prototype is developed and system modeling and parameter identification are executed. Then, optimal PID and optimal anti-windup PID controller are designed based on identified system model by using optimization toolbox in MA TLAB/Simulink and the performance of the two control systems are compared by experiment. It was found that the optimal anti-windup PID control system has better performance than the optimal anti-windup PID control system.

OPTIMAL IMPACT ANGLE CONTROL GUIDANCE LAWS AGAINST A MANEUVERING TARGET

  • RYOO, CHANG-KYUNG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.3
    • /
    • pp.235-252
    • /
    • 2015
  • Optimal impact angle control guidance law and its variants for intercepting a maneuvering target are introduced in this paper. The linear quadratic(LQ) optimal control theory is reviewed first to setup framework of guidance law derivation, called the sweep method. As an example, the inversely weighted time-to-go energy optimal control problem to obtain the optimal impact angle control guidance law for a fixed target is solved via the sweep method. Since this optimal guidance law is not applicable for a moving target due to the angle mismatch at the impact instant, the law is modified to three different biased proportional navigation(PN) laws: the flight path angle control law, the line-of-sight(LOS) angle control law, and the relative flight path angle control law. Effectiveness of the guidance laws are verified via numerical simulations.

Integrated Optimal Design of Smart Connective Control System and Connected Buildings (스마트 연결 제어 시스템과 연결 구조물의 통합 최적 설계)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.2
    • /
    • pp.43-50
    • /
    • 2019
  • A smart connective control system was invented recently for coupling control of adjacent buildings. Previous studies on this topic focused on development of control algorithm for the smart connective control system and design method of control device. Usually, a smart control devices are applied to building structures after structural design. However, because structural characteristics of building structure with control devices changes, a iterative design is required for optimal design. To defeat this problem, an integrated optimal design method for a smart connective control system and connected buildings was proposed. For this purpose, an artificial seismic load was generated for control performance evaluation of the smart coupling control system. 20-story and 12-story adjacent buildings were used as example structures and an MR (magnetorheological) damper was used as a smart control device to connect adjacent two buildings. NSGA-II was used for multi-objective integrated optimization of structure-smart control device. Numerical simulation results show the integrated optimal design method proposed in this study can provide various optimal designs for smart connective control system and connected buildings presenting good control performance.

Control of Wafer Temperature Uniformity in Rapid Thermal Processing using an Optimal Iterative teaming Control Technique (최적 반복 학습 제어기법을 이용한 RTP의 웨이퍼 온도균일제어)

  • 이진호;진인식;이광순;최진훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.358-358
    • /
    • 2000
  • An iterative learning control technique based on a linear quadratic optimal criterion is proposed for temperature uniformity control of a silicon wafer in rapid thermal processing.

  • PDF

Computational solution for the problem of a stochastic optimal switching control

  • Choi, Won-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.155-159
    • /
    • 1993
  • In this paper, we consider the problem of a stochastic optimal switching control, which can be applied to the control of a system with uncertain demand such as a control problem of a power plant. The dynamic programming method is applied for the formulation of the optimal control problem. We solve the system of Quasi-Variational Inequalities(QVI) using an algoritlim which involves the finite difference approximation and contraction mapping method. A mathematical example of the optimal switching control is constructed. The actual performance of the algorithm is also tested through the solution of the constructed example.

  • PDF

An Evaluation of Chiller Control Strategy in Ice Storage System for Cost-Saving Operation (운전비 절감을 위한 빙축열시스템 냉동기 운전기법 평가)

  • Lee, Kyoung-Ho;Choi, Byoung-Youn;Lee, Sang-Ryoul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.2
    • /
    • pp.97-105
    • /
    • 2008
  • This paper presents simulated and experimental test results of optimal control algorithm for an encapsulated ice thermal storage system with full capacity chiller operation. The algorithm finds an optimal combination of a chiller and/or a storage tank operation for the minimum total operation cost through a cycle of charging and discharging. Dynamic programming is used to find the optimal control schedule. The conventional control strategy of chiller-priority is the baseline case for comparing with the optimal control strategy through simulation and experimental test. Simulation shows that operating cost for the optimal control with chiller on-off operation is not so different from that with chiller part load capacity control. As a result from the experimental test, the optimal control operation according to the simulated operation schedule showed about 14 % of cost saving compared with the chiller-priority control.