• Title/Summary/Keyword: Optimal shape design

Search Result 1,107, Processing Time 0.038 seconds

Development of Stamping Process Optimization System: Integration of Optimal Blank Design and Optimal Nesting (스템핑 공정 최적화 시스템의 개발 : 최적블랭크 설계와 최적배치의 일체화)

  • 심현보;이상헌;박종규;김흥업
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.283-287
    • /
    • 2003
  • In recent years, design of an optimal blank shape is very important for sheet metal forming process in the automobile industry because the raw material cost rate is significant part in the automobile industry. With the design of an optimal blank shape, the engineer can protect a blank from an excessive holding force to improve the quality and reduce the ratio of material scrap. Therefore design of an optimal blank shape is inevitable in sheet metal forming process. However, if it causes a complicated shape of blank, it may be difficult to do the blank layout optimally. In this study, we developed software of optimal blank layout connected with the software of optimal blank shape design which was created in the past by the present authors. And by using these softwares, we would like to present the method in order to get optimal utilization ratio easily and precisely within short time for the sequence of works from design to blank layout.

  • PDF

Shape Optimal Design to Minimize the Weight of a Mask-Frame for OLED Vapor Deposition (OLED 증착용 마스크 프레임의 무게 최소화를 위한 형상최적설계)

  • Lee, Boo-Youn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.4685-4693
    • /
    • 2013
  • Present work deals with a shape optimal design to minimize the weight of the mask-frame used in the process of OLED vapor deposition by the fine metal mask. A design concept for an optimal shape of the frame to increase the stiffness and to reduce the weight is derived using the topology optimization, shape design variables of the frame by adopting slots being defined. An optimal shape is determined by solving the shape optimization problem to minimize the weight of the frame under constraints of the maximum displacement. Weight of the optimal design is 117.6 kg, which is reduced by 138.4 kg(54.1%) of that of the first design, 256 kg.

Die Shape Optimal Design in Bimetal Extrusion by The Finite Element Method (유한요소법에 의한 이중 금속봉 압출 공정의 금형 형상 최적설계)

  • 변상민;황상무
    • Transactions of Materials Processing
    • /
    • v.3 no.3
    • /
    • pp.302-319
    • /
    • 1994
  • A new approach to die shape optimal design in bimetal extrusion of rods is presented. In this approach, the design problem is formulated as a constrained optimization problem incorporated with the finite element model, and optimization of the die shape is conducted on the basis of the design sensitivities. The combinations of the core and sleeve materials.

  • PDF

A Study on Optimal Pole Design of Spoke type IPMSM with Concentrated Winding for Reducing the Torque Ripple by Experiment Design Method (실험계획법을 이용한 집중권 권선형 Spoke type IPMSM의 형상최적설계에 대한 연구)

  • Hwang, K.Y.;Kwon, B.I.
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.46-49
    • /
    • 2009
  • An optimal design procedure is proposed to effectively reduce the torque ripple by optimizing the rotor pole shape of the spoke type IPMSM with concentrated winding. The procedure is composed of two steps. In step I, the steepest descent method (SDM) is used with only two design variables to rapidly approach the optimal shape. From the near optimal rotor shape as a result of the step I, the design variables are reselected and the drawing spline curves are utilized to explain more complex shape with the Kriging model in step II. By using an optimal design procedure, we show that the optimized rotor pole shape of the spoke type IPMSM effectively reduces the torque ripple while still maintaining the average torque.

  • PDF

Optimal Shape Design of Dielectric Micro Lens Using FDTD and Topology Optimization

  • Chung, Young-Seek;Lee, Byung-Je;Kim, Sung-Chul
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.286-293
    • /
    • 2009
  • In this paper, we present an optimal shape design method for a dielectric microlens which is used to focus an incoming infrared plane wave in wideband, by exploiting the finite difference time domain (FDTD) technique and the topology optimization technique. Topology optimization is a scheme to search an optimal shape by adjusting the material properties, which are design variables, within the design space. And by introducing the adjoint variable method, we can effectively calculate a derivative of the objective function with respect to the design variable. To verify the proposed method, a shape design problem of a dielectric microlens is tested when illuminated by a transverse electric (TE)-polarized infrared plane wave. In this problem, the design variable is the dielectric constant within the design space of a dielectric microlens. The design objective is to maximally focus the incoming magnetic field at a specific point in wideband.

Development of Optimal Blank Shape Design Program Using the Initial Velocity of Boundary Nodes (초기 속도법을 이용한 최적 블랭크 설계 프로그램의 개발)

  • 심현보;이상헌;손기찬
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.77-81
    • /
    • 2002
  • A new method of optimal blank shape design using the initial nodal velocity (INOV) has been proposed for the drawings of arbitrary shaped cups. With the given information of tool shape and the final product shape, corresponding initial blank shape has been found from the motion of boundary nodes. Although the sensitivity method, the past work of Hynbo Shim and Kichan Son, has been proved to be excellent method to find optimal blank shapes, the method has a problem that a couple of deformation analysis is required at each design step and it also exhibits an abnormal behaviors in the rigid body rotation prevailing region. In the present method INOV, only a single deformation analysis per each design stage is required. Drawings of practical products as well as oil-pan have been chosen as the examples. At every case the optimal blank shapes have been obtained only after a few times of modification without predetermined deformation path. The deformed shape with predicted optimal blank almost coincides with the target shape at every case. Through the investigation the INOV is found to be very effective in the arbitrary shaped drawing process design.

  • PDF

Development of Optimal Blank Shape Design Program Using the Initial Velocity of Boundary Nodes (초기 속도법을 이용한 최적 블랭크 설계 프로그램의 개발)

  • 심현보;이상헌;손기찬
    • Transactions of Materials Processing
    • /
    • v.11 no.6
    • /
    • pp.487-494
    • /
    • 2002
  • A new method of optimal blank shape design using the initial nodal velocity (INOV) has been proposed for the drawings of arbitrary shaped cups. With the given information of tool shape and the final product shape, corresponding initial blank shape has been found from the motion of boundary nodes. Although the sensitivity method, the past work of the present authors, has been proved to be excellent method to find optimal blank shapes, the method has a problem that a couple of deformation analysis is required at each design step and it also exhibits an abnormal behaviors in the rigid body rotation prevailing region. In the present method INOV, only a single deformation analysis per each design stage is required. Drawings of practical products as well as oil-pan, have been chosen as the examples. At every case the optimal blank shapes have been obtained only after a few times of modification without predetermined deformation path. The deformed shape with predicted optimal blank almost coincides with the target shape at every case. Through the investigation the INOV is found to be very effective in the arbitrary shaped drawing process design.

Optimal Design for the Low Drag Tail Shape of the MIRA Model (MIRA Model 후미의 저저항 최적 설계)

  • Hur Nahmkeon;Kim Wook
    • Journal of computational fluids engineering
    • /
    • v.4 no.1
    • /
    • pp.34-40
    • /
    • 1999
  • Drag reduction on vehicles are the main concern for the body shape designers in order to lower the fuel consumption rate and to aid the driving stability. The drag of bluff bodies like transportation vehicles is mostly pressure drag due to the flow separation, which can be minimized by controlling the location and size of the separation bubble. In the present study, the TURBO-3D code is incorporated with optimal algorithm based on analytical approximation method to obtain an optimal afterbody shape of the MIRA Model corresponding to the lowest drag coefficient. For this purpose three mutually independent afterbody angles are chosen as design variables, while the drag coefficient is chosen as an objective function. It is demonstrated in the present study that an optimal body shape having the lowest drag coefficient which is about 6% lower than that of the original shape has been successfully obtained within number of iterations of tile optimal design loop.

  • PDF

Optimal Shape Design of Container in HIPing Process by the Finite Element Method (유한요소법을 이용한 HIPing 공정에서의 컨테이너 형상 최적설계)

  • 전경달
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.257-260
    • /
    • 1999
  • It is very important to design the shape of container in HIPing process since the final shape and relative density distribution of the product are decisively dependent on the shape of container. A derivative based approach to determine the shape of container in HIPing process is presented. In this approach the optimal design problem is formulated on the basis of the finite element process. The process model the formulation for process optimal design and the schemes for the evaluation of the design sensitivity and an iterative procedure for optimization are described. In comparison with finite difference scheme the validity of the schemes for the evaluation of the design sensitivity is examined.

  • PDF

Development of Stamping Process Optimization System through the Integration of Blank Design and Nesting (블랭크 설계와 배치의 일체화를 통한 스탬핑 공정 최적화 시스템의 개발)

  • 심현보;박종규
    • Transactions of Materials Processing
    • /
    • v.12 no.7
    • /
    • pp.615-622
    • /
    • 2003
  • In the automobile industry, the design of optimal blank shape becomes a significant part of the stamping. It provides many evident advantages, sush as enhancement of formability, reduction of material cost and product development period. However, the nesting process, required for the optimal usage of materials in the blanking becomes more complicated as the blank shape becomes complicated, like most optimal blank shape. In this study, stamping process optimization system for the optimal usage of material has been developed through the integration of optimal blank design and optimal nesting. For optimal blank design, a radius vector method, the modified version of the initial nodal velocity method, the past work of the present author, have been proposed. Both the optimal blank design and optimal nesting programs have been developed under the GUI environment for the convenience of engineers. The efficiency of the optimization system has been verified with some chosen problems.