• Title/Summary/Keyword: Optimized transmission power level

Search Result 9, Processing Time 0.027 seconds

A New Maximum Inductive Power Transmission Capacity Tracking Method

  • Ameri, Mohammad Hassan;Varjani, Ali Yazdian;Mohamadian, Mustafa
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2202-2211
    • /
    • 2016
  • In certain applications, such as IPT-based EV charger (IPTEC), any variation in alignment and distance between pickup and charger primary leads to a change in leakage and magnetic impedance magnitudes. The power transmission capacity is not always at the maximum level because of these variations. This study proposes a new low-cost tracking method that achieves the Maximum Inductive Power Transmission Capacity (MIPTC). Furthermore, in the proposed method, the exchange of information between load and source is not required. For an application such as IPTEC, the load detected by the IPTEC varies continuously with time because of the change in state of the charge. This load variation causes a significant variation in IPT resonant circuit voltage gain. However, the optimized charging output voltage should be kept constant. From the analysis of the behavior of the IPT circuit at different working frequencies and load conditions, a MIPTC operation point that is independent of load condition can be identified. Finally, the experimental results of a developed prototype IPT circuit test show the performance of the proposed method.

Implementation and Performance Evaluation of ELM-MAC Protocol for Energy Efficiency in Sensor Networks (센서 네트워크에서 에너지 효율을 위한 ELM-MAC 프로토콜의 구현 및 성능평가)

  • Yun, Phil-Jung;Kim, Chang-Hwa;Kim, Sang-Kyung
    • Journal of the Korea Society for Simulation
    • /
    • v.17 no.4
    • /
    • pp.81-88
    • /
    • 2008
  • It is important to study the energy efficient MAC protocol in sensor networks. We propose a new protocol named as ELM?MAC (Energy efficient Link Management MAC) to increase energy efficiency in sensor networks. ELM-MAC protocol operates, uses, and manages the optimized transmission power level to increase energy efficiency in MAC layer. It includes mechanism that uses the adaptive method in change of surround environment for guarantee of link quality. In this paper we implement ELM-MAC and evaluate its performance.

  • PDF

A Study on Optimization of the Vehicle Intake System for Obtaining Sporty Sound Quality (스포티 음색 구현을 위한 자동차 흡기 시스템의 최적화 연구)

  • You, C.J.;Yun, T.M.;Kang, C.K.;Lee, J.E.
    • Journal of Power System Engineering
    • /
    • v.14 no.2
    • /
    • pp.55-59
    • /
    • 2010
  • In the study, it is considered sporty car as 1400cc entry cars using sound generator. These cars are required special sound quality, also sporty sound quality. The operational principle of this sound generator system is that on the operation of the engine intake valves caused pulsating is to shake the membrane of the sound generator on the inside of the driver front dash panel through the intake manifold, which will deliver the required sound quality and tone. For the component constructed sound generator, main design parameters are selected and optimized using the daguchi's method. The results are as follows; The C2 sound level must be minimized and C4 level must be maximized. And also overall level keeps linear characteristics.

Modeling and Simulation using Simulink and SimPowerSystem of optimized HTS FCL location in a Smart Grid having a Wind Turbine connected with the grid

  • Khan, Umer-Amir;Lee, Sang-Hwa;Seong, Jae-Kyu;Lee, Bang-Wook
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.2
    • /
    • pp.17-20
    • /
    • 2010
  • A considerable amount of research material discussing designs and properties of High Temperature Superconducting Fault Current Limiter (HTS FCL) is available. However, a shortage of research concerning positioning of HTS FCL in power grid is felt. In this paper a feasibility study of HTS FCL positioning in Smart Grid through simulation analysis is carried out. A complete power network (including generation, transmission and distribution) is modeled in Simulink / SimPowerSystems. A generalized HTS FCL is also designed by integrating Simulink and SimPowerSystem blocks. The distribution network of the model has a wind turbine attached to it forming a micro grid. Three phase fault have been simulated along with placing FCL models at key points of the distribution grid. It is observed that distribution grid, having distributed generation sources attached to it, must not have a single FCL located at the substation level. Optimized HTS FCL location regarding the best fault current contribution from wind turbine has been determined through simulation analysis.

Maximum Modulation Index of VSC HVDC based on MMC Considering Compensation Signals and AC Network Conditions (전력계통 전압 변동과 순환 전류 보상 성분을 고려한 MMC 기반 VSC-HVDC의 최대 변조 지수 선정에 관한 연구)

  • Kim, Chan-Ki;Belayneh, Negesse Belete;Park, Chang-Hwan;Kim, Jang-Mok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.1
    • /
    • pp.61-67
    • /
    • 2020
  • This study deals with the modulation index (MI) of a voltage source converter (VSC) HVDC system based on a modular multilevel converter (MMC). In the two-level converter, the purpose of the MI is to maximize the achievable AC voltage of the converter from a fixed DC voltage. Unlike that in a two-level converter, the MI in the MMC topology plays a role in making the converter a voltage source using a capacitor. The circulating current in the MMC distorts the AC voltage reference, and the distortion affects the MI. In addition, the AC network conditions, such as AC voltage variation and reactive power, affect the MI. Therefore, the MI should be optimized with consideration of internal and external factors. This study proposes a method to optimize the MI of an MMC HVDC system.

A Low-Computation Indirect Model Predictive Control for Modular Multilevel Converters

  • Ma, Wenzhong;Sun, Peng;Zhou, Guanyu;Sailijiang, Gulipali;Zhang, Ziang;Liu, Yong
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.529-539
    • /
    • 2019
  • The modular multilevel converter (MMC) has become a promising topology for high-voltage direct current (HVDC) transmission systems. To control a MMC system properly, the ac-side current, circulating current and submodule (SM) capacitor voltage are taken into consideration. This paper proposes a low-computation indirect model predictive control (IMPC) strategy that takes advantages of the conventional MPC and has no weighting factors. The cost function and duty cycle are introduced to minimize the tracking error of the ac-side current and to eliminate the circulating current. An optimized merge sort (OMS) algorithm is applied to keep the SM capacitor voltages balanced. The proposed IMPC strategy effectively reduces the controller complexity and computational burden. In this paper, a discrete-time mathematical model of a MMC system is developed and the duty ratio of switching state is designed. In addition, a simulation of an eleven-level MMC system based on MATLAB/Simulink and a five-level experimental setup are built to evaluate the feasibility and performance of the proposed low-computation IMPC strategy.

IEEE 802.15.4 power efficiency analysis using high-speed Wireless Personal Area Network transceiver in the environment for Internet of Things

  • Woo, Eun-Ju;Moon, Yu-Sung;Kim, Jung-Won
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.878-881
    • /
    • 2018
  • In this paper, experiments through performance evaluation under real operation environment were conducted. Transceiver and microcontroller shows the characteristics for the amount of current consumption and software protocol was optimized by controlling the time of Report Attribute and electric current level. To reduce current consumption when using battery, with designing transmission of the same amount of data as soon as possible, power consumption efficiency was enhanced.

53.1 Low power and low EMI display technologies based on the total image systematic approach

  • Okumura, Haruhiko;Baba, Masahiro;Takagi, Ayako;Sasaki, Hisashi;Matsuba, Mitsunori
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1081-1085
    • /
    • 2009
  • We have already developed EMI reducing techniques using lossless compression by vertically differential EMI suppression method (VDE[1]). It applies lossless modulo reduction and data bit mapping optimization for low voltage differential signaling (LVDS) transmission lines, that reduces the probability of transient bit and EMI by 12 dB [6][7]. We also improved and optimized the VDE for low power LCD interface. With this modified VDE algorithm[8], the developed FPGA was measured the reduction of the power consumption of LCD circuit by more than 15 % compared to the conventional methods in the case of 14-in LCD with SXGA resolution. The VDE algorithm is based on the total image systematic approach. In the VDE method, the present image signals are subtracted for the 1H delayed image signals and transferred to a column driver through a PCB. As the vertical correlations for image signals are very high, we expected that most of the vertically subtracted image signals remain 0 level and transient cycles become very long. As a result, the power consumption and EMI are extremely reduced for the transferred image signals on a PCB. In this paper, we discussed our proposed method by emphasizing the fact that systematic approach are important based on not only display point of view but also total system point of view.

  • PDF

Performance and Operating Characteristics Analysis of the 16-APSK Modulation over Nonlinear Channels (16-APSK 변조 방식의 성능 및 비선형 채널에서의 동작 특성 분석)

  • Kang, Seok-Heon;Kim, Sang-Tae;Sung, Won-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.4C
    • /
    • pp.362-369
    • /
    • 2007
  • APSK (Amplitude Phase Shift Keying) digital modulation is characterized by the circular positioning of the transmission symbols in the constellation diagram. Due to such structural characteristics, the peak-to-average power ratio of the APSK modulation is lower than that of the QAM (Quadrature Amplitude Modulation), and the amount of performance degradation over nonlinear channels can be mitigated. The APSK modulation scheme has recently been adopted as satellite communication system standards including the DVB-S2 (Digital Video Broadcasting - Satellite, Version 2). In this paper, a BER (Bit Error Rate) upper bound approximation formula is derived using the channel model with the output power saturation characteristics, and its accuracy is demonstrated. Using the derived formula, the input power level that minimizes the BER is determined. The optimized performance based on the radii ratio of the 16APSK constellation and the channel saturation level is also presented.